当前位置:育文网>教学文档>教案> 平行四边形教案

平行四边形教案

时间:2023-05-22 12:07:58 教案 我要投稿

实用的平行四边形教案锦集6篇

  在教学工作者开展教学活动前,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编精心整理的平行四边形教案6篇,欢迎阅读,希望大家能够喜欢。

实用的平行四边形教案锦集6篇

平行四边形教案 篇1

  教学内容:

  人教版小学数学教材五年级上册第87~88页例1及相关练习。

  教学目标:

  1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

  2.能正确地应用公式计算平行四边形的面积。

  教学重点:

  探索并掌握平行四边形面积计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程,体会转化思想。

  教学准备:

  课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。

  教学过程:

  一、激趣引入

  1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?

  你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)

  2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?

  3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?

  【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。

  二、新知探究

  (一)合理猜想

  1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。

  预设1:邻边相乘;

  预设2:底边乘高。

  2.同桌互相说一说,你同意哪一种猜想?理由是什么?

  3.反馈想法。

  预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。

  预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。

  (二)验证猜想

  同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?

  1.邻边相乘的想法

  教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?

  学生:边的长短没变,高和面积变了。

  教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?

  教师:现在谁能说说这种拉的方法合理吗?为什么?

  教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。

  【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。

  2.底边乘高的想法

  (1)数格子验证

  教师:这里的一些不是整格的怎么数?

  学生:可以通过拼一拼,变成整格的再数。

  教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?

  (2)剪拼验证

  教师:谁来展示你是如何进行剪接的?

  学生:沿高剪下,补到另一边,拼成长方形。

  教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)

  那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。

  【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。

  (三)公式推导

  教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?

  学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?

  教师:如果我们用

  表示平行四边形的面积,用

  表示平行四边形的底,用

  表示平行四边形的高,那么平行四边形的面积计算公式可以用

  来表示。

  (四)回顾总结

  回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?

  【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的`计算公式。

  三、练习巩固

  (一)基础练习

  1.完成练习十九第1题。

  (1)请学生计算,并进行订正。

  (2)反馈小结:在计算时,可以先写出面积公式,再进行计算。

  2.完成练习十九第2题。

  (1)请学生计算,并进行反馈。

  (2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。

  【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。

  (二)拓展提升

  一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?

  1.引导学生算出它的面积;

  2.请学生在方格纸上画出这样的平行四边形;

  3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。

  4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。

  5.思考:面积相等的平行四边形一定等底等高吗?为什么?

  【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。

  四、总结提示

  教师:回忆一下,今天这节课有什么收获?

  总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

  【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。

平行四边形教案 篇2

  教学目标:

  1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

  2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3、对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:

  理解公式并正确计算平行四边形的面积.

  教学难点:

  理解平行四边形面积公式的推导过程.

  学具准备:

  每个学生准备一个平行四边形。

  教学过程:

  一、导入新课。

  1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

  2、好,下面谁来说一说你找到了哪些学过的图形?

  3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  3、请同学看方格图填87页最下方的.表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽

  平行四边形的面积=底高

  S=ah

  S=ah或S=ah

平行四边形教案 篇3

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:掌握平行四边形面积公式。

  教学难点:平行四边形面积公式的推导过程。

  教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程():

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的`底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  (1)、(微机显示例一)求平行四边形的面积

  (2)、判断题(微机显示,强调高是底边上的高)

  (3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  (4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形教案 篇4

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的`定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

平行四边形教案 篇5

  教学内容

  本册教材第37—38页上的内容,完成第37页上的“做一做”。

  教学目的

  1、使学生初步认识平行四边形,了解平行四边形的特点。

  2、通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。

  教学重点

  探究平行四边形的特点。

  教学难点

  让学生动手画、剪平行四边形。

  教学过程

  (一)认识平行四边形

  1、出示主题图。

  从图中你看到了哪些图形,指给同桌看。

  2、出示带有平行四边形的实物图片。

  师:它们是正方形吗?是长方形吗?(学生回答后,教师接着问。)

  师:它们有几条边?几个角?它们叫什么图形呢?

  学生回答后教师说明:这样的.图形叫平行四边形。

  3、感受平行四边形的特点

  (1)让学生拿出三条硬纸条,用图钉把它们钉成三角形,然后拉一拉。(学生一边拉一边说自己的感受)

  (2)让学生拿出教师给他们准备的四条硬纸条,用图钉把它们钉成一个平行四边形形,然后拉一拉。(学生一边拉一边说自己的感受)

  (3)小组讨论操作:怎样才能使平行四边形拉不动呢?

  学生汇报时,要说说理由。

  (二)掌握平行四边形。

  1、在钉子板上“钩”。

  你认为什么样的图形是平行四边形呢?在钉子板上围围看。(学生动手操作,

  然后汇报、展示)

  2、在方格纸上“画”。

  让学生在方格纸上画出一个平行四边形。(学生动手操作,然后汇报、展示)

  3、折一折、剪一剪。

  你会剪一个平行四边形吗?(学生动手操作,然后汇报、展示并说说各自不同的剪法。)

  4、通过上面的活动,你发现平行四边形是一个什么样的图形?(小组讨论)

  (三)巩固平行四边形。

  1、课堂练习:完成练习九第1—3题。

  2、课外练习:完成练习九第5题。

平行四边形教案 篇6

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  一、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、讲授新课

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的`面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的“填空”。

  7、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  (四)应用

  1、学生自学例1后,教师根据学生提出的问题讲解。

  3、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  4、做书上82页2题。

  三、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  四、作业

  练习十五第1题。

  五、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽 平行四边形的面积=底×高

  S=a×hS=ah或S=ah

【平行四边形教案】相关文章:

平行四边形教案04-01

《认识平行四边形》教案03-30

平行四边形面积教案02-09

特殊的平行四边形教案07-29

认识平行四边形教案08-26

平行四边形的特征教案02-27

《平行四边形的认识》教案03-15

平行四边形的面积教案04-07

《平行四边形的面积》教案06-01

《平行四边形的判定》教案06-03