有关平行四边形教案范文汇编十篇
作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?下面是小编为大家收集的平行四边形教案10篇,希望对大家有所帮助。
平行四边形教案 篇1
教学目标
1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.
2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.
教学重点
掌握平行四边形的意义及特征.
教学难点
理解平行四边形与长方形、正方形的关系.
教学过程
一、复习准备.
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.
教师提问:我们学过哪些四边形呢?
学生举例.
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形.
二、学习新课.
1.理解平行四边形的意义.
首先出示一组图形.
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行、四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量.
指名到黑板上用三角板检验一下,每个图形的对边怎样.
(3)抽象概括.
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的`结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2.平行四边形的特征和特性.
(1)教师演示.
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.
(2)动手操作.
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.
(3)归纳平行四边形特性.
根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)
(4)对比.
三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.
这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?
(如汽车间的保护网,推拉门、放缩尺等.)
3.学习平行四形的底和高.
(1)认识平行四边形的底和高.
教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.
(2)找出相应的底和高.【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.
(3)画平行四边形的高.【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.
②引导学生比较正方形和平行四边形的相同点和不同点.
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习.【继续演示课件“平行四边形”】
1.判断下列图形哪些是平行四边形?
2.指出平行四边形的底,并画出相应的高.
3.在钉子板上围出不同的平行四边形.
4.数一数下图中有( )个平行四边形.
四、教师小结.
1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2.组织学生对所学知识提出质疑,并解疑.
3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)
五、布置作业.
1.用一套七巧板拼出不同的平行四边形.
2.在下面每个平行四边形中分别画出两条不同的高。
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的'丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学要求: 1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。 2.养成良好的审题习惯。 教学重点:运用所学知识解答有关平行四边形面积的应用题。 教学过程: 一、基本练习 1.口算。(练习十六第4题) 4.90.75.4+2.640.250.87-0.49 530+2703.50.2542-98612 2.平行四边形的面积是什么?它是怎样推导出来的? 3.口算下面各平行四边形的面积。 ⑴底12米,高7米; ⑵高13分米,第6分米; ⑶底2.5厘米,高4厘米 二、指导练习 1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米? ⑴生独立列式解答,集体订正。 ⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件? ②生独立列式,集体讲评: 先求这块地的面积:25078010000=1.95公顷, 再求共收小麦多少千克:70001.95=13650千克 ⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想? 与⑵比较,从数量关系上看,什么相同?什么不同? 讨论归纳后,生自己列式解答:58500(250781000) ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。 2.练习十七第6题:下土重量各平行四边形的`面积相等吗?为什么?每个平行四边形的面积是多少? 1.6厘米 2.5厘米 ⑴你能找出图中的两个平行四边形吗? ⑵他们的面积相等吗?为什么? ⑶生计算每个平行四边形的面积。 ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。) 3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。 28平方米 7米 分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。 三、课堂练习 练习十六第7题。 四、作业 练习十六第5、8、9、11题。 一、教学目标: 1、让学生知道平行四边形面积公式的推导过程,以平行四边形与长方形关系为基础,引导学生通过动手操作和观察、比较,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积或是解决一些简单的实际问题。 2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。 3、培养学生自主学习的能力。 4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。 二、教学重点: 平行四边形面积的计算公式的推导及计算。 三、教学难点: 平行四边形面积计算公式的推导过程。 四、教学用具: 长方形、平行四边形硬纸片、剪刀、直尺 教学过程: 一、引出主题: 师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢? 师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊? 生:长方形的'长和宽(点出长、宽)。 师:现在老师已经量出来长15米、宽10米,那么它的面积是什么? 生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式) 师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积) 二、动手操作(得出公式): 师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来? 生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看) 师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形? 生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。 三、得出结论: 师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗? 生:s=a×h 师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。 四、巩固提高: 练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。 它的面积是多少?(结果保留整数。) 解答:4.8×3.5=16.8(平方厘米)≈17(平方厘米) 五、小结: 面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。 教学目标 知识与技能: 1.使学生理解平行四边形和梯形的概念及特征。 2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。 过程与方法: 通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。 情感态度和价值观: 通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。 重点理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。 难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。 教具图形,剪子,七巧板 教学过程 教师导学 一、创设情景感知图形 1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页) 2.在我们美丽的校园中,你能找到哪些四边形? 梯子的侧面-梯形 3.画出你喜欢的一个四边形。说一说什么样的图形是四边形? 展示学生画出的四边形,请学生标出它们的名称。 长方形 平行四边形 梯形 正方形 4.小组交流: 从四边形的特点来看,四边形可以分成几类? 学生讨论交流 二、探究新知 1.归纳平行四边形和梯形的概念 有什么特点的图形是平行四边形? 两组对边分别平行的四边形叫做平行四边形。 强调说明:只要四边形的.每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。 提问: ①生活中你见过这样的图形吗? 它们的外形像什么? ②这些图形有几条边?几个角?是什么图形? ③这几个四边形有边有什么特点? ④它是平行四边形吗? ⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么? 只有一组对边平行的四边形叫做梯形。 5.现在你有什么问题吗? 长方形和正方形是平行四边形吗?为什么? 6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗? 教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。 教学目标: 1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应 用公式正确计算平行四边形的面积。 2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。 3.情感目标:培养空间观念,发展初步的推理能力。 教学过程: 一、复习导入。 1.说出下面每个图形的名称。(电脑出示) 2.在这几个图形中,你会求哪些图形的面积呢? 3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题) 二、探究新知。 1.教学例1。 (1)出示例l中的第一组图形。 提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。 对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。 (2)出示例l中的第二组图形。 提出要求:你能用刚才的方法比较这两个图形的大小吗? 学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。 (3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。 2.教学例2。 (1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗? (2)学生操作,教师巡视指导。 (3)学生交流操作情况。 提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程) 提问:有没有不同的剪、拼方法? (继续请学生演示) 教师用课件演示各种转化方法,进行小结。 (4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开? 启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。 (5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。 3.教学例3。 (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系? (2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表: 转化成的长方形 平行四边形 长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡) (3)小组讨论: ①转化成的长方形与平行四边形面积相等吗? ②长方形的长和宽与平行四边形的底和高有什么关系? ③根据,长方形的面积公式,怎样求平行四边形的面积? (4)反馈、交流,抽象出面积公式。 根据学生的讨论进行如.下的板书: 因为 长方形的面积二长×宽 所以 平行四边形的面积二底×高 (5)用字母表示公式。 如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗? 结合学生的回答,板书: S=ah (6)指导完成“试一试”。 先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。 三、巩固深化。 1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。 2.指导完成练习二第1题。 (1)明确要求,鼓励学生尝试操作。 (2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的'底和高可以分别是多少? (3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。 3.指导完成练习二第2题。 先让学生指出每个平行四边形的底和高,再让学生各自测量计算。 提醒学生:测量的结果取整厘米数。 4.指导完成练习二第3、4两题。 先让学生独立解答,再通过交流说说自己解决问题的思路。 5.指导完成练习二第5题。 (1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。 (2)指导观察、思考。 要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢? (3)指导测量、计算,验证猜想。 (4)连续拉动长方形,启发思考面积的变化有什么特点。 四、全课小结。 通过今天的学习活动,你学会了什么?有哪些收获? 教学后记 通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。 教学内容: 人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。 教学目标: 1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积; 2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。 教学重点: 掌握平行四边的面积计算公式,并能正确运用。 教学难点: 平行四边形面积计算公式的推导。 教学过程: 一、情境激趣 1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。 2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢! 3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。 提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求? 4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。) 二、自主探究 1.数方格比较两个图形面积的大小。 (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。 (2)学生用数方格的`方法计算两个图形的面积并填写书上80页表格。 (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。 (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积? (5)观察表格,你发现了什么? (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。 (7)提出猜想:平行四边形的面积=底×高 2.操作验证。 (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。 (2)学生分组操作,教师巡视指导。 (3)学生展示不同的方法把平行四边形变成长方形。 (4)利用课件演示把平行四边形变成长方形过程。 (5)观察并思考以下两个问题: A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变? B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系? (6)交流反馈,引导学生得出: A.形状变了,面积没变。 B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。 (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。 (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。 3.教学例1。 (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少? (2)学生独立完成并反馈答案。 三、看书质疑 四、课堂总结 通过这节课的学习,你有哪些收获?(学生自由回答。) 五、巩固运用 1.练习十五第1题,让学生独立完成后反馈答案。 2.你会计算下面平行四边形的面积吗? 3.你能想办法求出下面平行四边形的面积吗? 4.练习十五第3题。 六、全课小结(略) 练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。 练习重点:正确运用公式计算所学的图形的面积。 教具准备:投影 教学过程: 一、基本练习 1.回答下列各图面积地计算公式和字母公式。 长方形长×宽ab 正方形边长×边长a2 平行四边形底×高ah 三角形底×高÷2ah÷2 梯形(上底+下底)×高÷2(a+b)h÷2 2.平行四边形、三角形、梯形的面积公式是怎样推导出来的? 二、指导练习 1.练习十八第12题:计算下面每个图形的面积。 3米8米12米 5.6米9.5米12米 5厘米 5.4 分5.8厘米5.2厘米 米 3分米5厘米7厘米 ⑴省独立审题,计算每个图形的面积。 ⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2” ⑶指6名学生板演,集体订正。 2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。 三、课堂练习 练习十八第14题 四、攻破难题 1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少? 分析与解: ⑴已知梯形的面积=(上底+下底)×高÷2 ⑵上底+下底=21+45=66米 ⑶高=759÷66×2=23米20厘米 2.17题:已知右面梯形的上底 是20厘米,下底是34厘米,其中涂色 部分的面积是340平方厘米。这个梯形 的面积是多少?34厘米 分析与解:要求梯形的`面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。 高:340×2÷34=20厘米, 面积:(34+20)×20÷2=540平方厘米 3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米? 15厘米 12厘米 25厘米 分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。 (15+25)×12÷2=240平方厘米 25×12÷2=150平方厘米 240-150=90平方厘米 4.思考题4厘米 右图中,梯形的面积是7212 平方厘米。请你算出阴影厘 部分的面积。米 解法一:先算出没有阴影部分 的面积:4×12÷2=24平方厘米, 再用梯形的面积减去这个三角形 的面积:72-24=48平方厘米。 解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底: 72×2÷12-4=8厘米 再算阴影部分的面积:8×12÷2=48平方厘米。 五、作业 练习十八11、13题 一、教学目标: 1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。 二、教学重点: 理解公式并正确计算平行四边形的面积。 三、教学难点: 理解平行四边形的面积公式的推导过程。 四、学具准备:平行四边形纸 五、教学过程: (一)、板书课题,揭示目标 同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书) 平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换) 一个方格代表12,不满一格的都按半格计算。 谁来数一数两个图形的面积各是多少?(出示) 平行四边形的底和高各是多少?(出示) 长方形的长和宽各是多少?(出示) (出示)你发现了什么? 同学们今天这节课我们就来学习“平行四边形的面积”(板书课题) 本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示) 要想完成学习目标,还要靠同学们认真自学,请看自学指导。 (二)出示自学指导 1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。 2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的`长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算? (6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!) 现在开始自学,注意看书的姿势,用剪刀时要注意安全! (三)、学生自学 1、学生看书自学,教师巡视,督促每个学生都能认真自学。 2、检测学生自学效果 师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示) 观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系? 想一想平行四边形的面积应该怎样计算?(师板书面积公式) 教师小结(展示动画): 同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。 (边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书) 下面就用你所学的知识去解决一下实际问题。 出示检测题 出示:平行四边形花坛的底是 6,高是 4,它的面积是多少? 抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。 (四)、后教 1、学生自由更正 在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。 2、讨论归纳 问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢? 板书:写公式——代入数——计算(单位)——写答话。 (五)、当堂训练 1、 2、 (六)、全课总结 这节课,你有什么收获? 六、板书设计 平行四边形的面积 长方形的面积=长×宽 平行四边形的面积=底×高 S=ah 写公式——代入数——计算(单位)——写答话 5 教学目标: 1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。 2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。 3、在学习活动中积累对数学的兴趣,培养交往、合作意识。 教学重点:认识平行四边形。 教学难点:感悟平行四边形的特征。 教学过程: 一、情境导入 同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。 二、自主探究 同学们在生活中见过这样的图形吗?在哪见过? 看,这是教师在生活中见到的四边形,你知道这是什么吗? 课件出示:教材第14页例2图 第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。 你能用两块完全一样的三角尺拼出这样的.平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。 学生动手操作,尝试拼平行四边形,教师巡视指导。 组织交流,展示学生拼图结果,并让学生说说发现了什么? (它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角) 老师边画平行四边形边指出:像这样的四边形叫做平行四边形。 三、巩固练习 1.“想想做做”第1题。学生独立完成,分小组讨论, 汇报。 2.“想想做做”第2题。组织学生想一想,再围一围。 3.“想想做做”第3题,学生在书上描一描,教师巡视检查。 4.“想想做做”第4题,学生动手完成。 5. “想想做做”第5题,学生在家长的帮助下完成。 三、全课总结 提问:今天这节课你有什么收获? 课后反思: 文 章 【平行四边形教案】相关文章: 平行四边形教案04-01 平行四边形的面积教案04-07 《平行四边形的面积》教案06-01 特殊的平行四边形教案07-29 《平行四边形的判定》教案06-03 认识平行四边形教案08-26 平行四边形的面积教案03-28 《认识平行四边形》教案03-30 平行四边形的特征教案02-27 平行四边形面积教案02-09平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
平行四边形教案 篇8
平行四边形教案 篇9
平行四边形教案 篇10