平行四边形教案合集七篇
作为一名优秀的教育工作者,总归要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是小编收集整理的平行四边形教案7篇,希望对大家有所帮助。
平行四边形教案 篇1
第五册平行四边形、三角形面积公式
教学过程
师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?
生1:卡片。
生2:奖品。
……
师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
教学过程
师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:S=ab2。
生4:我能把它剪成两个梯形教后反思
教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的'内容,何乐而不为呢?
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
平行四边形教案 篇2
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:平行四边形面积的计算。
教学难点:平行四边形面积公式的推导过程。
教学准备:学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的'剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3。5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形教案 篇3
教学
目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题
重点
难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
导学过程教师复备
(学生笔记)
复习回顾
1.平行四边形有哪些性质?
2.判别四边形是平行四边形的条件有哪些?
3.平行四边形的性质与条件的区别?
例题精讲
例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?
例2、如图,□ABCD的.对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?
反馈练习
1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)
2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?
3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由.
平行四边形教案 篇4
【教学内容】
人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。
【教学目标】
1、通过操作和讨论掌握平行四边形和梯形的特征。
2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。
3、注意培养学生的空间观念和想像力。
【教学重点】
通过操作和讨论掌握平行四边形和梯形的特征。
【教学难点】
了解平行四边形与长方形和正方形的关系。
【教学准备】
教师准备:直尺,三角板,课件。
学生准备:直尺,三角板,白纸,铅笔。
【教学过程】
一、通过观察,加深学生对四边形特点的了解。
1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。
(1) (2) (3)
(4) (5) (6)
师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?
生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。
师:你知识三角形和四边形有什么特点吗?
生1:三角形有三条边,三个角。
生2:四边形有四条边,四个角。
师:对,今天我们来学习两种特殊的四边形。
[设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]
二、通过观察讨论,让学生发现平行四边形和梯形的特点。
1、通过让学生观察讨论,认识平行四边形和长方形的定义。
出示课件:在电脑上出示一组四边形。
(1) (2) (3)
(4) (5) (6)
师:电脑上的这组图形都是什么图形?
生:四边形。(有前面的知识作铺垫,学生很容易回答出来)
师:你能把它们分类吗?
生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)
生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。
师:你能说说把图(1)、(3)、(6)分为一组道理吗?
生1:因为图(1)、(3)、(6)有两组平行线。
师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)
生:确实有两组平行线。
师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)
师:谁能说说把图(2)、(4)、(5)分为一组的道理?
生2:它们只有一组平行线。
师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)
2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。
师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?
生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。
生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。
生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,
师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。
师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。
师:你们能说说长方形和正方形特殊的地方吗?
生:它的四个角都是直角。
师:对,这说是平行四边形特殊的地方。
(通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)
3、进一步认识平行四边形和梯形的特点。
师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)
生1:我发现平行四边形对边是相等的。
师:请同学们用尺子量一量。
生2:我发现平行四边形的对角相等。
师:请同学们用量角器量一量。
师:这两位同学的发现正确吗?
生:完全正确。
师:梯形有这些特点吗?请同学们量一量。
生:没有,梯形的对边不相等,对角也不相等。
(通过学生的操作,进一点了解平行四边形和梯形的特点)
师:下面我们可以用图表表示平行四边形和梯形的特点。
图形对边平行对边对角
平行四边形有两组对边平行相等相等
梯形只有一组对边平行不相等不相等
(用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)
三、认识四边形之间的`关系。
师:同学们,平行四边形和梯形是不是四边形?
生:是。
师:我们可以用这个图来表示:
平行四边形
梯形
四边形
师:长方形和正方形应怎样表示呢?
生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。
师:对,应这样表示:
平行四边形
长方形 梯形
正方形
四边形
四、巩固练习。
1判断下面那些图形的平行四边形,那些图形的梯形。
(1) (2) (3)
(4) (5) (6)
(7) (8) (7)
(使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)
2填空。
1、两组对边( )的四边形叫做平行四边形。
2、( )的四边形叫做梯形。
3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。
4、平行四边形和梯形都是( )形,它们都有( ),( )个角。
(通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)
五、全课小结。
师:今天你们学到了什么?
生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。
[设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]
平行四边形教案 篇5
【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)
【回顾与思考】:
活动一:
准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.
(1)你得到了怎样的四边形?与同伴交流一下
(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?
(3)平行四边形的定义: 的四边形叫做平行四边形.
平行四边形 连成的线段叫做对角线
如图,四边形ABCD是平行四边形,
记作” ”
活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?
(2)平行四边形的'性质:平行四边形的对边
平行四边形的对角
几何语言:
∵四边形ABCD是平行四边形(已知)
∴AB= ,BC= ( )
∠A = ,∠B = ( )
【知识应用】:
1. □ABCD中,AB=3,BC=5,则AD= CD= 。
2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。
3. 如图:四边形ABCD是平行四边形。
(1)边AB、BC的长度
(2)求∠D、∠C度数。
【当堂反馈(小测)】:
1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.
2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;
3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.
4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.
5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。
6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数
【巩固提升】:
1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。
2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。
3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。
4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )
A. 105° B. 115° C. 125° D. 65°
5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )
A. 80° B. 90° C. 100° D. 110°
6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )
A、88°,108°,88°B、88°,104°,108°
C、88°,92°,88° D、88°,92°,92°
7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1
8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。
9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数
10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?
平行四边形教案 篇6
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的`四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
平行四边形教案 篇7
教学要求:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:
在制作中发现平行四边形的基本特征。
教学难点:
引导学生发现平行四边形的特征。
教学过程:
一、生活引入
1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。
2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)
3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的.电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)
二、操作探究
1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。
2.师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程)
3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?
4.下面,请每个小组的同学根据老师的提示进行讨论。
小组活动:
(1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。
(2)用什么方法去验证你们的猜想?怎样操作?
(3)通过观察,操作,验证,你们的结论是什么?
5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)
6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。
7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。
三、探索平行四边形与长方形的相同点与不同点。
1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。
2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?
3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?
四、小结,并认识平行四边形的不稳定性。
1.通过这节课的学习,你对平行四边形有哪些认识?
2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。
【平行四边形教案】相关文章:
平行四边形教案04-01
平行四边形的面积教案04-07
《平行四边形的面积》教案06-01
特殊的平行四边形教案07-29
《平行四边形的判定》教案06-03
认识平行四边形教案08-26
平行四边形的面积教案03-28
《认识平行四边形》教案03-30
平行四边形的特征教案02-27
平行四边形面积教案02-09