当前位置:育文网>教学文档>教学反思> 3的倍数的特征教学反思

3的倍数的特征教学反思

时间:2024-06-10 14:12:40 教学反思 我要投稿

3的倍数的特征教学反思

  身为一位优秀的老师,我们要有一流的教学能力,教学的心得体会可以总结在教学反思中,那么优秀的教学反思是什么样的呢?下面是小编整理的3的倍数的特征教学反思,希望对大家有所帮助。

3的倍数的特征教学反思

3的倍数的特征教学反思1

  3的倍数是在学习了2、5的倍数特征的基础上进行学习的,我让孩子们提前进行了预习,通过授课发现孩子们的预习没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的.过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。

  由于孩子们有了提前的预习,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。

  第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。

  第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。

  到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。

3的倍数的特征教学反思2

  “能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:

  1、确立了基本技能目标和发展性目标并重的教学目标。

  本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。

  2、理性处理教材,使教学内容生活化。

  教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。

  3、着力改变学生的学习方式。

  学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。

  4、合理定位教师角色,营造民主、和谐的学习氛围。

  课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,《3的倍数的特征》教学反思篇5

  《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的.倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

  但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。

  这节课结束后,我感觉以下方面做得不好。

  1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;

  2、在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。

3的倍数的特征教学反思3

  本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的'倍数,但马上就被其他同学推翻了。

  然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的和,发现珠子的颗数正好是3的倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。

  “想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。

3的倍数的特征教学反思4

  《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

  在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的'倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

  这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

  希望以后自己的教学会更扎实起来。

3的倍数的特征教学反思5

  《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。

  新的课程理念要求我们在教学中尽可能地为学生提供一个自主、合作、探究机会,其宗旨也就在于培养学生在实际的学习活动中,善于发现问题和提出问题的能力,灵活运用知识去解决问题的能力,在研究和解决问题的过程中学会合作。3的倍数的特征,有规律可循,容易上成机械刻板、枯燥无味的课,学生虽能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计采用了启发与发现相结合的教学方法,激励学生大胆猜想,动手实践,去发现规律,形成技能,升华至应用于生活。

  本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。当然,培养学生的`创造个性,仅仅停留在教学活动的情境上是不够的,教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。本课重点是要理解3的倍数特征,能够准确判断一个数是不是3的倍数。我采用的是复习导入,先和学生们一起回忆了一下

  2、5的倍数特征,然后出示本课的教学目标。新授环节先让学生猜测一下3的倍数会有哪些特征呢?接着采用数形结合的方法,学生动手操作,在1~100的数字卡里找一找3的倍数,然后用自己喜欢的符号圈起来,然后观察小组讨论汇报。发现3的倍数特征不像

  2、5的倍数特征一样,看一个数的末尾了,引导学生是不是要看这个数其它的数位上的数呢?学生发现也不是很难。教材中有提示,学生回家预习后也会清楚叙述出3的倍数特征是一个数各个数位上数字相加的和。找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。

  这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。

3的倍数的特征教学反思6

  【初次实践】

  课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……

  [反思]

  课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?

  【再次实践】

  (与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)

  师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的`特征只和什么有关?

  生:只和一个数的个位有关。

  师:与今天学习的知识比较一下,你有什么疑问吗?

  生1:为什么判断一个数是不是3的倍数只看个位不行?

  生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?

  ……

  师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。

  (学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)

  生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。

  生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。

  师:同学们想到用“拆数”的方法来研究,是个好办法。

  生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。

  生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。

  生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。

  生(部分):对。

  生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?

  生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。

  师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?

  学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。

  师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?

  生1:我想知道4的倍数有什么特征?

  生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。

  师:你能把学到的方法及时应用,非常棒!

  生3:7或9的倍数有什么特征呢?

  ……

  师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。

  [反思]

  1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

  3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

3的倍数的特征教学反思7

  本节课设计让学生先复习2,5的倍数特征,然后让学生先猜测一下3的倍数会有哪些特征,一部分学生很自然会猜测3的倍数也是看个位是否是3,6,9,这个时候就举出13这个反例推翻学生的猜测,让学生产生认知冲突,进而对3的倍数的学习有浓厚的学习积极性。之后让学生在百数表中圈出100以内3的所有倍数,最后让学生分小组讨论3的倍数特征。

  在教学之前,我一直很忐忑学生能不能在讨论中发现3的倍数的.特征。教学中按照预先设计的进行,当进行到小组讨论环节时,我走进小组听学生的交流,令我惊异的是,有一大部分小组能够发现3的倍数的特征。交流结束后,找学生来跟大家分享时,孩子们说的头头是道,比我预想的好的多得多,我想孩子自己发现并且分享后达到的效果一定比我灌输给他们的效果好的多的多。

  通过本节课的经历,我有一些感悟。在以后的教学中,很多内容可以放手让学生自己去探讨去研究,学生会给我意想不到的惊喜,相信学生。本节存在着很多不足:在组织学生小组活动时,没有在活动前明晰好规则,以至于活动的秩序不是很好,浪费了挺多的时间,最后的练习都没有进行完成,以后的备课要更加精细,把活动细则都写清楚。路漫漫其修远兮,吾将上下而求索。

3的倍数的特征教学反思8

  2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?

  一、互动、质疑,激发学生的探究兴趣。

  好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。

  二、鼓励学生独立思考,经历猜测验证的过程。

  数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。

  三、小组合作,发挥团体的作用

  动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。

  2、5、3的倍数的'特征教学反思四:

  课上完了,整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:

  1.2.3.5倍数的特征,它们在知识体系中是一个整体,而在特征和判断方法上有各自不同,这使得学生的学习过程始终处在“产生冲突解决冲突”的过程中,为学生的积极探索提供了较大的空间,也为每个学生在不同水平上参与学习提供了可能。例如,在探索能被3整除的数的特征时,有的学生提出“个位上是3的倍数”有的学生提出“某一位上的数是3的倍数”;而水平较高的学生提出:“各个数位上的数字之和是3的倍数”。在这样一个探索过程中学生的主动性和创造性得到了发挥。这是我认为比较成功的地方。

3的倍数的特征教学反思9

  1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

  2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的.主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

3的倍数的特征教学反思10

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  1、找准知识冲突激发探索愿望。

  找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、激发学习中的困惑,让探究走向深入。

  找准知识之间的'冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。

  3、课后反思使之完美。

  这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。

3的倍数的特征教学反思11

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的`数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  我从学生的已有认知出发,引导学生先进行合理的猜想,进而引发学生从不同的角度验证自己的猜想,通过验证,学生自我否定了自己的猜想。此时学生处于“不愤不启”的最佳的学习状态,他们迫切想知道3的倍数的特征究竟是什么?这样来调动学生学习的欲望,增强学生主动探究意识,有利于后面的探究学习。他们还认为在我们实际生活中,当你解决一个新问题时,一般没有人告诉你解决这个问题会碰到什么困难。你只有碰到问题后,在解决问题的过程中方才清楚还需要哪些知识,然后,你要在原来的知识库中去提取并灵活地应用原有的知识。

  新课堂呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因为课堂是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。

3的倍数的特征教学反思12

  《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:

  第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的`特征。最后实践应用,课堂检测。

  整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。

  反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。

3的倍数的特征教学反思13

  3的倍数的特征比较隐蔽,学生一般想不到从“个位上的数字之和”去研究。上课开始先让学生通过练习回顾旧知:2的倍数与5的倍数的特征。然后让学生猜想:3的倍数又有什么特征呢?这样能较好调动学生学习的积极性。由于受2的倍数与5的倍数特征的影响,有些学生很自然猜测到“个位上是0,3,6,9的数是3的倍数”、“各位上的数字加起来是3,6,9的数是3的倍数”等等,学生能想到这几点是非常不错的。

  学生进行猜想后,我并没有判断学生的猜想是否正确,而是出现了百数表,让学生在百数表中圈出所有的3的倍数,让学生从表中发现3 的倍数的特征,把自己发现的在小组间交流。此时,我还是没有判断学生的发现是否正确,而是让学生打开课本自学,从课本中找3的倍数的特征,当遇到问题解决不了时,我们可以向课本求助。然后问学生“各位上的数字的和是3的倍数是什么意思?请结合举例说说。”接下来将数扩到百以上,通过各种方式举正反例通过计算来验证从而得出3的倍数的特征。最后比较验证之前的猜想与发现。当我们向课本找到结论时,我们也要质疑,通过举例来验证。鼓励学生对知识要敢于质疑,敢于通过各种方式去验证,培养学生良好的数学思维。

  在教学中,我能有效获取课堂生成资源,同时也注重方法的指导。比如:同桌举例验证时,涉及到了“123456”是否是3的倍数,先给予学生思考的时间,让后问:还有更加简便的方法吗?老师有效引导,让学生去发现“去3法”能给我们的.判断带来很大的方便。还有在方框里填数等。有较好的教学机智与课堂驾驭能力,如:在百数表圈3的倍数时,我的课件中有个数“99”忘记没有圈好,学生发现了这问题。在这里,我是表扬了发现此问题的学生,老师故意说:我是特意没有圈的,看我们的学生观察是否仔细,考虑问题是否全面……,把原本的错误变成良好的教学资源。练习的设计业很有层次与梯度,联系生活实际。

  本节课也有很多不足的地方:百数表中的数据太多,部分学生的发现是乱七八糟的;在举例验证的过程中,学生的计算还不够,学生亲自从算中去体会更好;总结不太及时,从及时总结中提炼、提升会更好。

3的倍数的特征教学反思14

  《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。

  一、引发猜想,产生冲突。

  前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的'计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3 的倍数。

  二、自主探究,建构特征

  找3 的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  在完成100以内的数表中找出所有3 的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3 的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。

  在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。

  三、巩固内化,拓展提高。

  在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全 归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。

  在初步感知3 的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

3的倍数的特征教学反思15

  《2、5、3倍数的特征练习课》是一堂练习课,本节课是在学生已经学习了2,5,3倍数的特征的基础上进行教学的。为以后学习分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学习2,5的倍数特征仅仅体现在个位数上,到学习3的倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。

  如果只是单一的做习题,势必有学生会感到枯燥无味,这样子学生的学习效果难以保障,对教师的功底与教学策略有很大的挑战。因此课堂伊始,我直接开门见山式的先对前面学习的知识进行复习梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的'学习兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练习巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练习课不仅仅只是做练习,让学生能在练习中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。

【3的倍数的特征教学反思】相关文章:

3的倍数特征教学反思03-19

《3的倍数特征》教学反思04-11

《3的倍数的特征》教学反思02-11

3的倍数的特征的教学反思02-18

倍数特征教学反思03-16

《3的倍数特征》教学反思15篇04-11

《3的倍数的特征》教学反思15篇04-11

《2,5的倍数的特征》教学反思03-10

2,5倍数特征教学反思02-23