当前位置:育文网>教学文档>教学反思> 3的倍数教学反思

3的倍数教学反思

时间:2024-06-25 15:10:39 教学反思 我要投稿

3的倍数教学反思

  身为一名刚到岗的人民教师,我们的任务之一就是课堂教学,在写教学反思的时候可以反思自己的教学失误,如何把教学反思做到重点突出呢?下面是小编为大家整理的3的倍数教学反思 ,仅供参考,大家一起来看看吧。

3的倍数教学反思

3的倍数教学反思 1

  《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:

  教学片段一:

  让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右

  老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。

  师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。

  (结束)学生回答。

  生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数

  吗?(学生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

  (有32人和他一样)

  师:你分类的标准是什么?

  生2:个位是0——9的都归为一类,共两类。

  生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。

  师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)

  师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)

  以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。

  教学片段二:

  师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)

  师:谁来介绍自己新的分类方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  师:你的分类标准是什么?

  生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。

  师:谁来帮他“以此类推”?

  生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。

  生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。

  师:你能用一句话来表达吗?

  生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。

  生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。

  师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍数,105也是3的倍数。

  生5:1加1加1等于3,3是3的倍数,111也是3的倍数。

  ……

  (一个学生根据规律回答,其他学生用竖式验证。)

  生6:3的倍数的特征是找到了,但这样的分类太乱。我一共分3类:

  第一类:每个数数位上的数字的和是3:3、12、21、30;

  第二类:每个数数位上的数字的和是6:6、15、24、42、51;

  第三类:每个数数位上的数字的和是9:9、18、27、36、45……,这样的数是3的倍数。

  师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的'倍数没有超出这三类的。

  师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)

  师:谁能用几句话来概括?

  生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。

  师:真佩服你们!

  第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。

  学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。

  从本节课中,我有几点小小的感悟:

  一、教师不要害怕学生探究的失败。学生第一次探究的失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。

  二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3的倍数的概括(一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。),尽管实际的意义不是很大,但是它更具有横向的关联,2的倍数特征是:个位是0、2、4、6、8的数是2的倍数;5的倍数的特征是个位是0或5的数是5的倍数。或许,这种类比联想更容易让学生理解新的知识,更何况是学生自己探究出来的。其实很多教学内容我们都可以让学生进行探究,关键是教师如何给学生提供一个探究的载体,一种探究的环境。

  三、教师对学过的知识要经常地进行整合。新教材的特点是有些知识点分得比较散,所以教师要经常把学生学过的知识,在新知中不知不觉地再应用,再巩固。温故而知新,在复习与巩固中,学生会对旧知有更高的认识,更深的理解,也容易排除学生对新知的畏难思想。同时要经常地对各种知识进行串联,编织学生知识的网络,使学生认识到各种知识之间是相互关联相互作用的,以利于学生解决一些实际问题或综合性问题。

  四、教师要经常在教学中渗透一些数学思想。分类是一种数学思想,同时也是一种数学思维的工具。人教版小学数学第一册学生就接触了分类《整理房间》,第七册《角的分类》、第八册《三角形的分类》,让学生对分类有了更多的理解。其实在生活中,无处不在的分类:超市货物的摆放、自己书本的整理、性别之间、班级之间等等。对于分类的标准,分类的原则,学生在不知不觉中有了感悟。借助分类,有40%的学生找到了3的倍数的特征,学生完全是在观察、尝试、验证的基础上探究的,是自主的行为研究。在小学数学中,渗透了很多数学思想,如集合、对应、假设、比较、类比、转化、分类、统计思想等,在教学中合理地运用这些数学思想,对学生学习数学的影响是深远的,也会让我们的数学探究活动更有意义,更有价值。

3的倍数教学反思 2

  站在跳板上学习数学——3的倍数的特征教学反思

  《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展 。

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。

  其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的'倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。

3的倍数教学反思 3

  《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。

  一、引发猜想,产生冲突。

  前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3 的倍数。

  二、自主探究,建构特征

  找3 的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  在完成100以内的数表中找出所有3 的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的`解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3 的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。

  在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。

  三、巩固内化,拓展提高。

  在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全 归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。

  在初步感知3 的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

3的倍数教学反思 4

  兴趣是一种带有情感色彩的认识倾向。它以认识和探索某种事物的需要为基础,是推动人去认识事物,探求真理的一种重要动机,是学生学习中最活跃的因素。有了学习兴趣,学生在学习中产生很大的积极性,从而产生某种肯定的、积极的情感体验。下面,就在小学数学教学中如何结合学生的年龄及思维特点,培养学生的学习兴趣,谈几点体会。

  一、创设探索性情境,激发学习兴趣

  现代教育理论曾提出过“三主”的观点:即课堂教学应以学生的发展为主线,以学生探索性的学为主体,以教师创造性的教为主导。所以,在课堂教学中,教师应创设一个探索性的学习情境,引导学生从多种角度,各个侧面不同方向去思考问题,以激发学生的学习兴趣,变“要我学”为“我要学”。

  例如,在教学“平行四边形面积的计算”时,平行四边形面积的计算公式是教学重点,而平行四边形面积计算公式的推导又是教学的难点。如何突破难点,我们在课堂教学中做了这样的设计。我先出示长方形框架并告诉学生长方形长3分米,宽2分米,请学生说出它的面积,然后教师捏住长方形框架的一组对角向外拉,长方形变成了平行四边形。这时我提问:同学们能说出它的面积有没有变化吗?学生l回答:它的面积不变,还是6平方分米。学生2回答:它的面积变了,比5平方分米小。此刻,教师不必急于肯定或否定这两位学生的回答,给学生留一个悬念,这个平行四边形的面积到底是多少?怎样求得呢?根据小学生心理特点,他们一定会探索其中的缘由,而教师就应该给学生创设这种情境,放手让学生自己动手动脑去探索,自己得出结论。这样,学生求知欲望就被有力地激发出来,这种学习效果要比教师硬塞现成公式要好得多。

  二、创设竞争性情境,引发学习兴趣

  教育家夸美纽斯曾说“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。我们既然处在一个大的竞争环境中,不妨也在我们的小课堂中设置一个竞争的情境,教师在课堂上引入竞争机制,教学中做到“低起点,突重点,散难点,重过程,慢半拍,多鼓励。”为学生创造展示自我,表现自我的机会,促进所有学生比、学、赶、超。例如,在一次数学教研活动中,一位教师就根据教学内容并针对小学生心理特点设计了这样一种情境。讲授“8的认识”,在做课堂练习时,教师拿出两组0至8的数字卡片,指定一名男生和一名女生各代表男队,女队进行比赛。虽然此刻教师还没宣布比赛的规则和要求,可是全体同学已进入了教师所设置的情境之中,暗中为自己的队加油,全体学生的学习兴趣一下子被引发出来了。

  三、创设游戏性情境,提高学习兴趣

  根据数学学科特点和小学生好动、好新、好奇、好胜的思维特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红旗,多得为优胜。学生在游戏中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。

  四、创设故事性情境,唤起学习兴趣

  教学的艺术不在于传授本领而在于激励、唤醒和鼓舞“。我们认为这正是教学的本质所在。我们在数学教学中适当地给学生营造一个故事情境,不仅可以吸引学生的'注意力,并会使学生在不知不觉中获得知识。例如,在教学”比的应用“一节内容时,在练习当中我为同学们讲了一个故事:中秋节,江西巡抚派人向乾隆皇帝送来贡品——芋头,共3筐,每筐都装大小均匀的芋头180个,乾隆皇帝很高兴,决定把其中的一筐赏赐给文武大臣和后宫主管,并要求按人均分配。军机大臣和珅了马上讨好,忙出班跪倒”启奏陛下,臣认为此一筐芋头共180个,先分别赐予文武大臣90个,后宫主管90个,然后再自行分配“。还没等和珅说完宰相刘墉出班跪倒”启奏万岁,刚才和大人所说不妥。这在朝的文官武将现有56位,分90个芋头,每人不足两个,而后宫主管34人,分90个芋头,每人不足三个,这怎么能符合皇上的人均数一样多“。皇上听后点点头”刘爱卿说的有理,那依卿之见如何分好?“此时,学生都被故事内容所吸引,然后让学生替刘墉说出方法,这个故事把数学知识寓于故事情节之中,从而唤起学生学习兴趣。

  五、创设操作性情境,调动学习兴趣

  根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创造精神。

  例如,在讲”轴对称图形“内容时,教师提前让学生准备长方形、正方形、圆、平行四边形和几种三角形的纸片。让学生试做每个图形的对折,使图形对折后能完全重合。学生通过操作后发现有些图形能完全重合有些图形不能完全重合。学生通过亲自动手操作,自己发现问题、解决问题,而且有力地调动了学生的学习兴趣。

  通过多种形式的教学情境设计,不但使学生对学习数学产生乐趣,而且有助于培养学生勇于探索,大胆创新的精神。

3的倍数教学反思 5

  3的倍数是在学习了2、5的倍数特征的基础上进行学习的,我让孩子们提前进行了预习,通过授课发现孩子们的预习没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。

  由于孩子们有了提前的预习,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。

  第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的.倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。

  第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。

  到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。

3的倍数教学反思 6

  作为一名优秀的教师,我们需要很强的教学能力,借助教学反思我们可以学习到很多讲课技巧,来参考自己需要的教学反思吧!下面是小编收集整理的《3的倍数》优秀教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

  《3的倍数》教学反思1 在学习3的倍数中,刚开始,通过复习2,5的倍数,孩子们都能对数快速做出判断,适时的给出3、4、5三个数拼出2的倍数和5的倍数的数,在给出让孩子们猜测3的倍数的特征?孩子们的定势思维是个位为3的倍数,在此基础上,让孩子们进行判断,出现认知冲突,迫使孩子们继续寻找新的途径去解决。在百数图上,由孩子们找出3的倍数的数,并观察3的倍数有什么特征。孩子们在汇报特征时,出现“我发现每个斜排个位上的数都减少一”“我还发现每个斜排十位上的数都减一”适时的引导孩子们观察一个加一一个减一那么也就是说每个斜排的数的各位加起来都是相同的?这时孩子们还发现“第一个斜排加起来都是3”“ 第一个斜排加起来都是6” “第一个斜排加起来

  都是9”……这时候,离教学目标更为接近,让孩子们观察每个斜排这些3的倍数特征,得出都是3的倍数的猜测,并进行验证,得出3的倍数特征。再孩子们通过自己的观察发现3的倍数的特征后,让孩子们对于3的倍数特征有更深的认识。

  孩子们可以发现我们老师在备课中忽略的知识,让孩子们充分发言,并从中提取有价值的信息,才能引导出孩子们对于他们来说更为直接的认知方式。

  《3的倍数》教学反思2 在教学3的倍数的时候,先复习2的倍数和5的倍数的特征,然后出示1——100的数,让学生找出3的倍数,然后让学生观察这些数有什么特征。出现的情况有:1.3的倍数跟个位有关;2.这些3的倍数都相差3;3.这些3的倍数排列时是斜着的,几乎没有人考虑到各个数位和。

  看到这三个出现的情况,我有些发晕。分析可能有这样原因,一是学生受2和5的倍数的特征的影响,因为2和5的倍数的特征都只考虑个位,所以3的倍数也就考虑个位了;二是学生受1——100这些数排列的影响,只看整体排列的规律和所在位置的特征或者这一列数的特征,没有考虑个体数的特征。

  只有张靖晨说了12就看1+2=3,3是3的倍数,所以12就是3的倍数,她的回答就像救命稻草,我抓住她的话让同

  学去验证她说的是不是适合每个3的倍数,验证的结果证实了张靖晨的想法是对的。这是特征是在两位数范围内验证的那么三位数以外的数3的倍数是不是也有这样的特征,继续找几个数验证一下,结果适用于所有的数。这样3的倍数的特征就自然总结出来了。其实如果张靖晨不说这规律,我也是要提示学生往这方面想的。学生不会或者想不到的时候,老师适当的给与指导和提示,为学生的学习和研究指引一条正确的路是必须的。

  《3的倍数》教学反思3 3的倍数的'特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通

  过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的.倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。

  “试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。

  整节课只能说顺利地走了下来,对于教者我来说从中发

  现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。

3的倍数教学反思 7

  《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的'数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

  上课过程中,大部分学生能按照我的思路去学习,使整个教学环节顺利进行下去。然而这节课结束后,我感觉以下方面做得尚有欠缺,现总结如下:

  1、百数表使用不恰当。在推导3的倍数特征过程中,我将百数表的使用价值放在推翻同学们之前猜测的三的倍数是个位上的数是3、6或9,以及其他猜想上,其实百数表完全可以体现三的倍数的特征,我应该在今后的教学中多加思考,反复推敲,争取吃透教材,使学生们在学习新知识时候能够从最浅显的知识中入手,找到学习的方法,体会学习的乐趣;在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。

  2、教具准备不充分。在课堂教学中可以给学生分发百数表,人手一张表,将做错的同学的表格通过投影仪展示给大家,让同学们去纠错,在纠正错误的过程中,加深对知识的记忆。

  课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。

3的倍数教学反思 8

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流,学生发现这些数不一定是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。在此基础上,抽象成各位上数的和,是理解3的倍数特征的'关键。

  “试一试”是数学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数,利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。随后设计了一系列习题,使学生得到巩固提高。

3的倍数教学反思 9

  1、结合学生实际创设生活情境。

  《新课程标准》十分强调数学与现实生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”。“最小公倍数”是一节概念课,与学生的生活实际看似并无多大联系,为了使学生体验到概念与生活的联系,感受到数学知识在生活中的实际应用。我们对教材内容作了适当的补充调整,将运动会的情景贯穿始终。在解决实际问题“猜一猜, 参加接力比赛的同学可能有多少人?至少有多少人?”的同时很自然的得到了“公倍数”和“最小公倍数”的概念,为后面算理的探究做好了铺垫。这样设计,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高于生活的特点。

  2、通过自主探究引导学生构建概念和方法

  (1)概念的构建

  “公倍数”“最小公倍数”的概念,和“公约数”“最大公约数”的概念非常的相似,学生理解起来也比较容易。这部分内容我们采用迁移、引导的形式进行概念的构建。利用问题“24与3和4分别是什么关系”引导学生发现24 是3的倍数,同时也是4的倍数。利用旧知很顺利的自主构建出“公倍数”和“最小公倍数”的概念。

  (2) 方法的构建

  “最小公倍数”这节课的重难点就在于理解求最小公倍数的'算理。在算理的突破上,我们采用了对比的手段。利用已有的分解质因数的知识有效的进行了对比。

  当学生用分解质因数的方法计算出[18,30]=2×3×3×5=90 后,设计了问题: 2、3是什么?3、5是什么?两个3一样吗?明确了公有质因数和独有质因数以后,又将18和30的全部的质因数相乘和[18,30]进行对比。学生很直观的看到,公有的要选代表保证是最小的?独有的全取保证是公倍数?把两个结合起来就是最小公倍数。算理在直观的比较中一目了然。而求最小公倍数的短除的形式,学生在理解了算理的基础上,加上求最大公约数的知识经验,理解起来已然顺理成章。

  接下来我们结合运动会项目设计一个题目“用自己喜欢的方法求12和28的最小公倍数。”使学生在练习中自然的对算法进行优化,自主构建出短处形式的解题方法。

  在整个过程中学生利用已有的认识结构,自己动脑、动口,将直观比较与亲身体验建立起实质性的联系,进行自主构建。

  3、发挥习题作用进行算理巩固

  数学课堂上学生在建立起概念,找到解题方法之后,必须做相应的数学练习题,才能对知识进行巩固,对算理加深理解,才能形成技能、技巧,培养思维能力。

  我们设计以下两个练习题:

  (1)填空

  A=2×3×5

  B=3×5×7

  则[A,B]= (最小公倍数是多少?你是怎么找的?)

  设计这道练习题的目的有两个。第一:巩固算理,突出应用算理灵活、巧妙的解决实际问题。第二:满足不同层次学生的需求。这道题除了应用算理直接用2×3×5×7=210以外,还可以将A、B的结果分别计算出来后再用短除的形式计算[A,B]。这一方法对于那些对算理理解的不是很透彻,尤其是不能灵活的应用算理的学生来说无疑是一种好方法。在我们面向全体学生的教学中很需要这种我们自认为“麻烦”的方法。

  (2)两个数的最小公倍数是12,这两个数可能是( )和( )。

  设计这道练习题的目的也有两个。首先,通过这道题再一次激发学生的学习兴趣,将学习热情推向一个高潮。同时引出求两个数的最小公倍数时具有互质关系、倍数关系、一般关系的三组数。其次,将求具有互质关系、倍数关系、一般关系的两个数的最大公约数的规律进行迁移,通过自主探究,总结出具有这三种关系的两个数的最小公倍数的规律。

  需要改进的地方

  1、自己在教学中语言还不够简练,对学生放手还不够。有些问题可以大胆放手。

  2、在算理的突破上,虽然突破了难点,但问题较碎,老师还在牵着学生的手,一步一步去理解,其实,对于我们的学生完全可以通过讨论自己发现。

3的倍数教学反思 10

  心理学原理表明,新异的刺激可以引起学生的注意和兴趣。在教学中,根据不同的教材和要求,采取不同的教学方法,能够引起学生学习的兴趣,有利于创设良好的课堂气氛。

  教学3的倍数特征这一课时,教师组织学生进行下列巩固练习:

  下列数中3的倍数有:()

  1435451003328767488

  学生利用3的倍数的特征一下子就回答了上面的问题,得到了老师的肯定。这时我接着说:“我们来一场老师、学生打擂台怎么样?看谁说的3的倍数的数最多,我们看谁能考倒老师。”这时同学们兴趣盎然,纷纷出题来考老师。

  生:42

  师:111

  生:78

  师:57

  生:81

  师:20xx

  生:6891

  …………

  这时师故意出错:369041

  学生马上发现了这个数不是3的倍数,师问:“你能不能改一改其中的`某个数字使它成为3的倍数。”

  生:“可以将1改为2。”

  生:“可以将4改为5。”

  生:“可以将1改为5。”

  生:“可以将1改为8。”

  生:“可以将4改为2”

  生:“可以将4改为8”

  学生回答完后,我及时提问:“你们为什么不改其中的3、6、9和0呢?”学生通过思考回答:“因为0、6、3、9每一个数都是3的倍数,所以只要改4和1这两个数就行了。”这时我及时指出:“判断一个数是不是3的倍数可以用筛选法来判断,在各数位的数字中先筛去3的倍数或和为3的倍数的数字,若余下的数字之和是3的倍数,原数就是3的倍数,否则就不是。”这时我逐渐地出示下列这组数要求学生马上判断是否3的倍数。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  这个巩固练习,有效地调动了学生的积极性,不断激起学生认知的内驱力,使学生在探索的过程中,主动学习、主动探索,带来了内心的满足感。

3的倍数教学反思 11

  核心提示:今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的.最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。 教学练习四第8题。提醒学生:每...

  今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。

  教学练习四第8题。提醒学生:每隔6天去一次是指7月31日以一,下一次训练日期是8月6日;要求他们两次相遇的日期,实际上就是求6和8的最小公倍数。

3的倍数教学反思 12

  《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。

  3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。

  1、瞄准目标,把握关键

  在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的`矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、经历过程,授之以渔

  猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。

  3、追求本真,知其所以然

  本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。

3的倍数教学反思 13

  2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?

  一、互动、质疑,激发学生的探究兴趣。

  好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。

  二、鼓励学生独立思考,经历猜测验证的过程。

  数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的.倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。

  三、小组合作,发挥团体的作用

  动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。

  2、5、3的倍数的特征教学反思四:

  课上完了,整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:

  1.2.3.5倍数的特征,它们在知识体系中是一个整体,而在特征和判断方法上有各自不同,这使得学生的学习过程始终处在“产生冲突解决冲突”的过程中,为学生的积极探索提供了较大的空间,也为每个学生在不同水平上参与学习提供了可能。例如,在探索能被3整除的数的特征时,有的学生提出“个位上是3的倍数”有的学生提出“某一位上的数是3的倍数”;而水平较高的学生提出:“各个数位上的数字之和是3的倍数”。在这样一个探索过程中学生的主动性和创造性得到了发挥。这是我认为比较成功的地方。

3的倍数教学反思 14

  一、吃透教材,选择合适的学习材料

  本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。

  在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把原来铺墙砖的题目改为找两人的共同休息日来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。

  二、吃透教材,确定准确的.教学目标

  教师主要围绕,让理解两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中46年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数的要求。小学生的生活实际问题的解决能力普遍较低,把运用公倍数与最小公倍数的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能的要求。

  三、吃透教材,设计流畅的教学环节

  小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。

  4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

3的倍数教学反思 15

  2、5、3的倍数特征按照教材的安排是分为两节课完成的,但在教学这堂课时,我尝试用一个课时的时间教学了这个内容。内容增多了,但一堂课40分没有增加,怎样把课堂的学习效率提高是摆在我们面前的值得考虑的问题。再加上本堂课的数学概念挺多的,怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?

  一、互动、质疑,激发学生的探究兴趣。

  好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。

  二、同点教学,由扶到放。

  2、5的倍数特征有共同之处,都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。在教学既是2又是5的倍数的特征时,我没有让学生通过做课本上的习题总结结论,而是通过让学生玩一个游戏,要求学生的学号是2的倍数就出来站在讲台的左边,是5的倍数就站在讲台的右边。是2也是5的倍数的同学就犯难,不知该站那边全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的.倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为比较成功的地方。

  三、让学生经历科学探索的过程。

  整节课让学生经历“观察——操作——讨论——验证得出结论——解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学力求把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机融为一体。让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、去质疑。把数学和生活有机联系起来,使学生体会到数学在现实生活中的作用和价值,初步学会用数学的眼光去观察事物、思考问题,解决问题。

  四、感受“猜想”与“结论”的不同。

  本节课在制定目标的时候,从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,教学3的倍数时,我引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。由学生的猜想特征时,认为3的倍数的特征个位是3、6、9等数,这与2和5的倍数的特征的学习经验受影响。通过举例验证时,才发现3的倍数特征不是看个位就可以决定。有了这样的猜想,最后通过举例的方法验证后,学生同时找出反例,再次验证反例是否与结论同步。相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。并用适当的方法来验证自己的猜想,从而得到正确的结论。不足之处:

  1、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。

  2、由于教学内容相对多,教学环节要紧凑,某些概念的认识不够深入。

  3、学生活动时间较多,导致小组合作交流之间的时间少了。

【3的倍数教学反思 】相关文章:

3的倍数的特征教学反思06-10

《3的倍数的特征》教学反思02-11

3的倍数的特征的教学反思02-18

《3的倍数特征》教学反思04-11

3的倍数特征教学反思03-19

教学倍数教学反思02-25

《3的倍数的特征》教学反思15篇04-11

《3的倍数特征》教学反思15篇04-11

因数与倍数教学反思04-01

《因数与倍数》的教学反思04-06