当前位置:育文网>教学文档>教学反思> 数轴教学反思

数轴教学反思

时间:2024-06-30 10:38:47 教学反思 我要投稿

数轴教学反思

  身为一名人民教师,我们要有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,写教学反思需要注意哪些格式呢?下面是小编帮大家整理的数轴教学反思,欢迎阅读与收藏。

数轴教学反思

数轴教学反思1

  本节课从学生已有的生活经验出发研究新问题,依据教师为主导,学生为主体的原则,始终贯穿“激发情趣--手脑并用--启发诱导—合作交流”的教学方法。要求学生画数轴,怎样确定原点的位置?怎样确定单位长度?在数轴上画同几个单位长度?这些都要根据具体情况而定,学生在本节时还存在疑问。

  关于数轴上有理数之间的位置关系,练习不够。可设计游戏:指定若干名学生站成一排,间距相同,每位学生看作数轴上的'若干个点,教师任意指定某学生为原点,其余学生说出自己所表示的有理数。

数轴教学反思2

  教后记本节课的教学目标是:

  1、能将已知数在数轴表示出来,并能说出数轴上已知点所表示的数。

  2、了解数轴的三要素:原点,正方向和单位长度,能画出数轴。

  3、培养学生的识图能力。

  4、通过探索数轴上的点与有理数的关系,初步形成数形结合的思想。

  抓住这个目标让学生有充足的时间在教师的引导下进行有条理的主观探索,并在与同学的交流中敢于表达自己的观点,得出自己的结论,养成良好的数学思维习惯,

  这节课的教学设计有几个特点:

  首先让学生回顾有理数,同时借助多媒体让学生举手回答,使学生思维活跃迅速进入上课状态。

  在进入新课时,又借助实物让学生对数轴有一个感性的认识,引导学生回答在实际生活中类似于温度计的例子,让学生注意力集中,思维活跃。教师对教材中的例1进行灵活性的解释,学生通过实际生活中的具体模型归纳他们所具有的共同特点,从而得出数轴的定义,教学中应在学生的归纳处突出数轴的三要素,学生踊跃发言,共同不漏,兴趣提升,课堂气氛活跃。

  在这节课的教学过程中,学生的思维始终保持高度的'活跃的性,出现了很多的闪光点,对我的启发也很大。在教学中应把握教材的精神,创造性的利用教材,在设计安排和组织教学过程的每一个环节都应当很意识的体现探索的内容和方法,避免教学内容的过分抽象和形成化,使学生通过直观感受去理解和把握体验数学学习的乐趣。积累数学活动经验,体现数学学习的乐趣,积累数学活动经验,体验数学思维的意义,让学生在中学中逐步形成创新意识。

  本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。

  本节课注意改进的方面是课堂最后的小结中,教师提出数轴上的点与有理数并非一一对应的关系,将学生的思想引入更深一层做的不好,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问,与其对困难学生的帮助等,使小组合作学习更具时效性。

数轴教学反思3

  本节课的教学是在学生认识负数的基础上进行的,学生对负数的认识理解和掌握得比较理想,为这节课的教学打下很好的基础。

  教学这节课前,为了更好的利用好学生已有的知识经验和做好知识迁移,我在上课的开始设计了“请画一条5厘米的线段,平均分成5份,并标上数据。如果在0刻度的左边再画5厘米,平均分成5份,数字该怎样标?”这样的问题让学生动手、思考,迁移和引入到本节课展开教学创设了情境,让学生在动手操作和思考中发现“正数和负数是表示两种相反意义的量”。在此基础上,由于学生有了观察和理解数轴的经验,例题的教学以学生自主探究和合作交流的教学模式进行,所以这节课的'教学很顺利完成,课堂上学生学习气氛浓厚,积极性比较高,从学生的练习和作业中看到这节课的教学效果是比较好的。

  为了提高学生的综合素养以及思维,我设计了一道练习:

  结合生活实际拓展延伸:六年级三个班进行综合百科知识抢答竞赛,答对一题得10分,答错一题扣10分,不答得0分。三个班目前的得分如下。六(1)班0分,六(2)班+20分,六(3)-10分。根据三个班的得分,说一说他们的答题情况。引导学生从多角度思考问题,并回答完整,培养学生综合能力,表达能力,提高了学生的思维。

数轴教学反思4

  《实数》这一章我对概念的处理上,重点抓住主要概念,注重概念的形成过程,让学生在具体的活动中获得认识,增强理解;对内容的安排上,联系实际情境,导入新知识,注意前后知识间的对比,同时让学生在运用中促进对知识的理解和掌握。引入时先通过具体的活动求面积为2的正方形的边长,提出问题:它可能是整数吗?它可能是分数吗?让学生亲身经历这些活动,在讨论中引起认知冲突,感知生活中确实存在不同于有理数的数,产生探求的欲望:它不是有理数,那它是什么数?再让学生进一步借助计算器充分探索,得出它是一个无限不循环小数,从而给出无理数的概念。这与历史上无理数的产生和发展过程是一致的,符合人的认识规律,同时让学生体会到抽象的数学概念在现实世界中有其实际背景。在教学中,突出了讨论无理数和实数的概念,实数是在有理数的基础上中以扩充的,定义了无理数之后,有理数和无理数统称为实数.对实数的比较大小和运算两个问题,通过类比由有理数得到。

  当无理数的概念和表示形式为学生熟知以后,实数概念的引入就水到渠成了。本章最后总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。由于分类的标准不同,实数分类的方法可以有多种.在这主要介绍了两种分类方法:一种是按有理数和无理数分类;一种是按实数的大小分类.无论采取哪种分类方法,关键是不重不漏。通过教学,向学生渗透对概念进行分类的原则:一是要选定一个属性为标准,选择的标准不同,分类的结果也不同,但每次分类不能同时选用两个以上的不同属性作标准;二是不越级进行分类,就是说分类的结果应该是它的邻近的种类概念,而不能越级,如把实数分为整数、分数和无理数,就是越过了“有理数”这一级,这是不正确的.正确的科学分类经常采用二分法,即在每一次分类时,将被分类的.所属概念以某一属性为标准,分成且仅分成互不相容的两个矛盾关系的两种概念,并且逐级地这个分下去.二分法不仅是全面地、系统地掌握要领的重要的分类方法,而且也是系统地分析问题和解决问题的有力方法.

  通过实数与数轴上的点一一对应的关系的讲解,进一步是学生认识到有理数的存在,另外在学生思维中形成数形结合思想,为以后利用数形结合思想求解打好基础。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的。例如:无理数的引入,先让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义。在教学时,鼓励了学生动手、动脑、动口,与同伴进行合作,并充分地开展交流。通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。

数轴教学反思5

  完成数轴这节课的教学,反思整个教学过程,我觉得自己有几点还是很欣慰的,比如:

  一、能较好地把握住了本节应让学生掌握的内容,通过与温度计的类比认识数轴。会用数轴上的点表示有理数,并且借助数轴理解相反数的`概念,知道互为相反数的一对数在数轴上的位置关系,学生上完本节课课后,相信对于以上知识点应能灵活掌握。

  二、教学过程中充分调动学生的积极性,让其主动参与到课堂中,比如情景引入中有学生模仿温度计,自己设计出能表示有理数的图形,然后教师帮助总结,得出数轴的形状及概念,这个过程就充分发挥了学生的主体性,让学生明白数学来源于实际,以后也许对身边的事物就会多留意,会去多一层的探索,培养创新意识。

  不足之处也不少,如在数轴的图形与概念介绍前,应让学生将其模仿温度计设计的数轴展示在黑板上,让同学们自己总结就更为完美了,在介绍相反数的概念时,忘记强调了0的相反数,我觉得本节课的教学让我再次发现学生的潜能是无穷的,我们应多放手,多创造机会,充分发挥学生学习的主动性。

数轴教学反思6

  本节课,当学习用数轴上的点表示有理数时,应让学生了解任何一个有理数都可用数轴上的点表示,但数轴上点所表示的数并非都是有理数。学生不但要知道数轴上 给定的点表示的数,还要能把给定的数用实心点表示在数轴上。然后结合4和-4在数轴上的表示引到相反数的概念及在数轴上反映出的几何性质。注意相反数概念 中的“只有”两字及对于零的特殊规定。在整个数轴的教学中始终注重数与形的结合教学,在最后设置了一个实际问题,如:老师从学校出发,骑车向东走了3千米 到达小聪家,继续向东走了1.5千米到达小明家,最后向西走了8.5千米到达小颖家. 你能用数轴表示小聪家、小明家、小颖家以及学校的位置吗?你能说出小颖家在学校的什么位置吗?

  本课之所以这样设计,理由是:(1)从教学目标看,数轴是数形结合的典范,也是数形结合思想的初次出现,抽象性较高,同时它也是重中之重的概念,所以老师 必须提供足够生动的.背景,使学生获得比较深刻的感性认识。(2)从教学艺术的需要看,运用生动活泼的场景可以使学生集中注意力,激起学生浓厚的兴趣,愉快 地进入课堂教学的最佳状态。在这种教学情景中,学生理解最深刻,记忆最牢靠。特别要强调的是:深刻的感性认识是学生在理解、记忆、应用等思维活动过程中的 强有力的支撑点。(3)在动态的演示与多种情况的归纳,有利于提高学生动态解决问题的意识,建立运动的观点,同进也有利提高学生的数学建模能力。(4)一 些感性认识的建立,也有利学生学习下一节“绝对值”的概念,起承上启下的作用。

数轴教学反思7

  《实数》这一章我对概念的处理上,重点抓住主要概念,注重概念的形成过程,让学生在具体的活动中获得认识,增强理解;对内容的安排上,联系实际情境,导入新知识,注意前后知识间的对比,同时让学生在运用中促进对知识的理解和掌握。引入时先通过具体的活动求面积为2的正方形的边长,提出问题:它可能是整数吗?它可能是分数吗?让学生亲身经历这些活动,在讨论中引起认知冲突,感知生活中确实存在不同于有理数的数,产生探求的欲望:它不是有理数,那它是什么数?再让学生进一步借助计算器充分探索,得出它是一个无限不循环小数,从而给出无理数的概念。这与历史上无理数的产生和发展过程是一致的,符合人的认识规律,同时让学生体会到抽象的数学概念在现实世界中有其实际背景。在教学中,突出了讨论无理数和实数的概念,实数是在有理数的基础上中以扩充的,定义了无理数之后,有理数和无理数统称为实数。对实数的比较大小和运算两个问题,通过类比由有理数得到。

  当无理数的概念和表示形式为学生熟知以后,实数概念的引入就水到渠成了。本章最后总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。由于分类的标准不同,实数分类的`方法可以有多种。在这主要介绍了两种分类方法:一种是按有理数和无理数分类;一种是按实数的大小分类。无论采取哪种分类方法,关键是不重不漏。通过教学,向学生渗透对概念进行分类的原则:一是要选定一个属性为标准,选择的标准不同,分类的结果也不同,但每次分类不能同时选用两个以上的不同属性作标准;二是不越级进行分类,就是说分类的结果应该是它的邻近的种类概念,而不能越级,如把实数分为整数、分数和无理数,就是越过了“有理数”这一级,这是不正确的正确的科学分类经常采用二分法,即在每一次分类时,将被分类的所属概念以某一属性为标准,分成且仅分成互不相容的两个矛盾关系的两种概念,并且逐级地这个分下去。二分法不仅是全面地、系统地掌握要领的重要的分类方法,而且也是系统地分析问题和解决问题的有力方法。

  通过实数与数轴上的点一一对应的关系的讲解,进一步是学生认识到有理数的存在,另外在学生思维中形成数形结合思想,为以后利用数形结合思想求解打好基础。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的。例如:无理数的引入,先让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义。在教学时,鼓励了学生动手、动脑、动口,与同伴进行合作,并充分地开展交流。通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。

数轴教学反思8

  一.在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲:

  1.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过 程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。利用温度计引入调动学生学习的积极 性。

  2.教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  二、在问题的探索上:

  我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的.情景下,在具有较多的时间和空间的条件下,亲身参加探索 发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学 生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

  三、习题的配备:

  整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互 相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。

  四.不足之处:

  学生通过学习掌握了画数轴时原点的位置和单位长度可以实际情况来确定,但由于受课本练习册数轴图形的影响,有部分学生认为只有向右的方向才能作为数轴的正 方向,遇到向其它方向为正方向数轴图形就认为它不是数轴了。这有待在今后的教学中改进教学方法使学生加深对这方面的理解。

数轴教学反思9

  本人对其中《数轴》这一节课有以下几个方面的感悟:

  一、问题的引入

  在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了以计算机为辅助手段,设计以下三种情境:A、一只老虎和一只狮子从同一地点出发分别向东西方向跑去,比较相同时间后它们所在的位置(奔跑速度不同)B、放风筝C、温度计。对问题提出解决的办法,并且在对学生提出的各种情况,做出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题有些简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

  二、问题的探索

  在问题的探索上,我采用了师生双边活动。通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

  三、习题的配备

  整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对数轴任意两点之间的大小关系理解进一步的加强以及对相反数概念的`理解。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个数大小关系作出判断,并且对各种情况做出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。

  四、设计思想

  本课之所以这样设计,理由是:

  (1)从教学目标看,数轴是数形结合的典范,也是数形结合思想的初次出现,抽象性较高,同时它也是重中之重的概念,所以老师必须提供足够生动的背景,使学生获得比较深刻的感性认识。

  (2)从教学艺术的需要看,运用生动活泼的场景可以使学生集中注意力,激起学生浓厚的兴趣,愉快地进入课堂教学的最佳状态。在这种教学情景中,学生理解最深刻,记忆最牢靠。特别要强调的是:深刻的感性认识是学生在理解、记忆、应用等思维活动过程中的强有力的支撑点。

  (3)在动态的演示与多种情况的归纳,有利于提高学生动态解决问题的意识,建立运动的观点,同进也有利提高学生的数学建模能力。

  (4)一些感性认识的建立,也有利学生学习下一节“绝对值”的概念,起承上启下的作用。

数轴教学反思10

  [日期:20xx-06-19] 作者: [字体:大 中 小]

  这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。在教学与学习中注重数形结合是数学教学与学习的重要指导思想,以后学习有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。

  “数轴”这堂课我在教学的引人部分进行了一些修改和细化,我从“射线→数射线→数轴”一步步引入。先在屏幕上出示一个点,再从这个点引出一条射线,在射线上等距离地标上数,使之成为一条数射线,接着把数射线向另一方向延伸,就成了一条数轴。有了这样动态的过程,学生对数轴的形成有了较为清晰的认识。

  在此基础上,让学生带着以下几个问题进行自主学习:

  1、怎样用数学语言描述数轴?

  2、说说数轴有哪些要素?

  3、画数轴有哪几个步骤?

  学生在自学的过程中非常认真,问题一一得到了解决,整个概念的教学流畅自然,而且让学生充分地进行了思考和积极地探索,令学生对于数轴的三要素理解深刻,突破了难点。学生在画数轴时容易出现一些画法上的小错误,所以我在屏幕示范画数轴的过程中边画边附上几点说明:原点、单位长度和正方向三要素缺一不可;直线一般画水平并非只能画水平;原点可取直线上任一点但一取定就不再改变;

  正方向用箭头表示,一般取从左到右为正;单位长度取适当应结合实际需要但一旦取定就不再改变,要做到刻度均匀。这一示范和说明使他们对自学的.内容进行了纠正和有效的强化,但简单的说教所达到的效果并不显著,所以,我设置了一组典型的错误画法让学生辨别及时纠错、深化理解,帮助他们真正领会了数轴的含义。我想,作为教师,我们在备课时不但要备教材,更要备学生,学会换位思考,学生可能会出现怎样的问题和疏忽,我们要有所准备,及时预防和纠正。我又想,如果先放手让学生自己画,然后把学生自己画的数轴(特别是有错误的)展示,相互指正,以示警戒,也不失为一种很好的教学资源。

  本节课,当学习用数轴上的点表示正负数时,学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。在整个数轴的教学中始终注重数与形的结合教学,在最后设置了一个实际问题,如:上海杨浦大桥主跨602米的结合梁斜拉桥在1994年建成时居世界斜拉桥跨度之首,现名列第三。它是中国大跨度桥梁的又一里程碑,标志着中国正在走向世界桥梁强国之列。①上海杨浦大桥中孔跨径A、B点的距离为602米。如果以AB的中点0为原点,向右方为正方向,适当的单位长度画数轴,那么A、B两点分别表示什么数?②如果以左塔A为原点,那么塔B所表示的数是多少?学生进一步认识到“数轴上的点表示的大小与点的位置有关”,并在解决实际问题的过程中充分体会到数学的应用价值。

  

数轴教学反思11

  教完《数轴》这节课后,反思整节课的教学,我认为自己能够以学生为主体,比较充分的发挥了学生的主动性和积极性,满意之处有以下三点:一是温度计引入,创设情境。

  上课时我拿了一支温度计,学生看到后就好奇了:老师这节课要干什么呢?上课后,我说:“请一位同学来观察一下这个温度计,并报出具体度数。”学生的情绪一下子就起来了,把手举得高高的,希望被老师看到。接下来我挑了一位学生上台做,其他同学也在密切的注视,完成这个小活动以后,我又向学生们问了两个问题:(1)温度计里零上几度与零下几度和正负数有何联系?就有学生迫不及待的发言:“零上对应正数,零下对应负数”,进行到这里,我就发现学生不仅积极性高涨,而且对正负数的理解也变得清楚了。(2)你能把这个温度计画下来么?学生就想:画画啊!我会。都认真的画了起来。画完以后我就告诉他们,他们画温度计的示数的过程就是我们这节课要学的知识———数轴。那么就引起了学生的兴趣,降低了学习新课的畏难情绪。

  二是结合温度计的具体形象来了解数轴。

  引入新课以后,我让学生自学课本,在自学数轴的具体画法时,让学生回想刚才画温度计的示数过程,并让学生思考温度计怎样放时的形象最像数轴?学生就这样边自学边对比,然后长出一口气:原来这就是数轴啊!这样学生就把枯燥的理论知识与具体形象结合了起来,对于数学概念有了一个生动化的认识,就加深了理解和记忆。

  三是在习题的配备上是由浅入深,由易到难,面向全体学生,学生学习效果很好,尤其是正分数和负分数的.表示上练系的很到位,使学生突破了难点。

  由这三点我悟出:教师在课下要多研究教材,多做准备工作,找出数学知识与生活事例的结合点,以具体化的事例引起学生的兴趣,把数学与生活结合起来,让学生觉得数学有用,那么他们肯定就会主动地去学习。

  当然也有很多不足之处,一是对学生情绪的调动不能做到张弛有度。在利用温度计时,虽然提高了学生的积极性,可是在前期学生的积极性过于高涨,以至于很难平静下来,在接下来的学习中很难投入进去;二是时间控制把握不准,活动前期耗费过多时间,以至于后期时间不足,没有灵活有效的把握好课堂,这就需要我在课下时间多研究学生的心理,学会利用一些合适的语言来收放学生的情绪,争取尽快弥补自己的不足,早日解决这些问题。

数轴教学反思12

  本课为负数教学的第二课时,整个教学设计由教材情境出发,准确把握本课的教学目标,精心预设教学的各个环节,给学生提供了较大的思考空间,创设多个贴近学生认知规律且适合学生学习的教学情境,使学生在现实情境中了解用数轴表示正负数的方法。针对本课的教学设计,主要有以下几点思考:

  1、从实际生活的`真实情境中呈现学生的原有认知,由此深入开展对问题的探究。本课的设计,把教材提供的情境图进行处理,以乐乐要拍轴对称图形的照片为背景,以大树为起点,一个人往东走,一个人往西走,让图中的人物都动起来,这 样能够充分调动学生学习的积极性。

  2、拥有多种教学活动方式,突出活动的实效性,教学设计中,通过以大树为起点的运动状态引出数轴,画数轴,以及学生列举生活中的实例,能够让学生体会生活中大量存在的正负数,体会数学与生活的密切联系。

数轴教学反思13

  教完《数轴》这节课后,反思整节课的教学,我认为自己能够以学生为主体,比较充分的发挥了学生的主动性和积极性,满意之处有以下三点: 一是温度计引入,创设情境.

  上课时我拿了一支温度计,学生看到后就好奇了:老师这节课要干什么呢?上课后,我说:“请一位同学来观察一下这个温度计,并报出具体度数.”学生的情绪一下子就起来了,把手举得高高的,希望被老师看到。接下来我挑了一位学生上台做,其他同学也在密切的注视,完成这个小活动以后,我又向学生们问了两个问题:(1)温度计里零上几度与零下几度和正负数有何联系?就有学生迫不及待的发言:“零上对应正数,零下对应负数”,进行到这里,我就发现学生不仅积极性高涨,而且对正负数的理解也变得清楚了.(2)你能把这个温度计画下来么?学生就想:画画啊!我会.都认真的画了起来.画完以后我就告诉他们,他们画温度计的示数的过程就是我们这节课要学的知识---数轴.那么就引起了学生的兴趣,降低了学习新课的畏难情绪.

  二是结合温度计的具体形象来了解数轴.

  引入新课以后,我让学生自学课本,在自学数轴的具体画法时,让学生回想刚才画温度计的示数过程,并让学生思考温度计怎样放时的形象最像数轴?学生就这样边自学边对比,然后长出一口气:原来这就是数轴啊!这样学生就把枯燥的'理论知识与具体形象结合了起来,对于数学概念有了一个生动化的认识,就加深了理解和记忆.

  三是在习题的配备上是由浅入深,由易到难,面向全体学生,学生学习效果很好,尤其是正分数和负分数的表示上练系的很到位,使学生突破了难点。

  由这三点我悟出:教师在课下要多研究教材,多做准备工作,找出数学知识与生活事例的结合点,以具体化的事例引起学生的兴趣,把数学与生活结合起来,让学生觉得数学有用,那么他们肯定就会主动地去学习.

  当然也有很多不足之处,一是对学生情绪的调动不能做到张弛有度.在利用温度计时,虽然提高了学生的积极性,可是在前期学生的积极性过于高涨,以至于很难平静下来,在接下来的学习中很难投入进去;二是时间控制把握不准,活动前期耗费过多时间,以至于后期时间不足,没有灵活有效的把握好课堂,这就需要我在课下时间多研究学生的心理,学会利用一些合适的语言来收放学生的情绪, 争取尽快弥补自己的不足,早日解决这些问题。

  

数轴教学反思14

  一、问题的引入

  在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我设计以下三种情境:A、温度计 B、珠穆朗玛峰、C 汽车站牌问题。我感觉在问题引入上问题有些简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

  二、问题的探索

  在问题的探索上,我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的.条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

  三、习题的配备

  整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。最后找了两名学生,在数轴上表示出一些数,发现暴露出很多问题,所以还有待于进一步训练。

数轴教学反思15

  数轴是学习绝对值和平面直角坐标系的基础,同时也是一个非常重要的数学工具,它使数和数轴上的点建立其对应关系,可以用它揭示数与型之间的关系,它是数形结合的基础。此外数轴还能反映数的性质,从数轴上可以一目了然地看出某个数是正数、负数还是零;数轴还能解释某些概念,如相反数、绝对值,还可以使比较大小变得更直观。为了使学生能更好的理解和准确的画出数轴,对本节课的教学进行了适当的创意,并采取了学生动手主动探究,小组合作的学习方式,达到了预期的学习目的。

  成功:

  1、根据本节课的特点,创设问题情境,布置学生预习。认真观察已准备好的温度计,是否有刻度?刻度是否均匀?所标出的温度是否有方向性?零上的温度是在温度计的上方还是下方?零下的温度呢?然后让学生拿出已准备好的工具,自制温度计,对比看自己在制作过程中出现了什么不足,能否制作出更长的`温度计?激发学生的求知欲,点燃了激情。从而导入新课,自然得出数轴的概念和三要素。

  2、根据一些学生的操作,进行了以下几点的强调。

  数轴的三要素缺一不可。(2)要画直线。(3)原点可以是数轴上任意一点。(3)正方向用箭头表示,一般是从左到右。(4)单位长度选取应适当,但刻度要均匀。

  3、学生辨析,及时纠错。设置了一些典型的错误画法,让学生辨别及时纠错。同时让学生动笔画图,尽量让他们出现错误,互相纠正,加深理解。

  4、在教会学生在数轴上表示有理数的同时,利用数轴得到了互为相反数的概念及几何性质,进一步强调“只有”两字的意义及零的相反数的规定。在本节的教学中始终注重数形结合的数学思想。

  5、培养了学生的动手能力。学生动手画,解决实际的问题。如利用数轴表示据我校东300米的食杂店,西500米的车站。体验数学知识的使用价值及数学知识来源于实际并应用实际的现实。

  不足:

  1、个别学生不会利用数轴比较大小,有时把方向标错。

  2、个别学生的应用能力还有欠缺。

  3、在数轴应用方面还要进一步加强

  4、若有时间再给学生一定拓展思维的空间,进一步挖掘学生的探究能力。

【数轴教学反思】相关文章:

数轴教学反思03-20

《数轴》教学反思03-06

数学数轴教学反思02-10

《数轴》说课稿12-29

《数轴》说课稿06-20

数学教案数轴03-26

数轴说课稿11篇11-21

数轴说课稿(11篇)11-21

数轴说课稿12篇01-10

数轴说课稿(通用11篇)01-11