当前位置:育文网>教学文档>教学反思> 《勾股定理》教学反思

《勾股定理》教学反思

时间:2022-01-11 09:07:20 教学反思 我要投稿

《勾股定理》教学反思范文

  作为一位刚到岗的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以快速提升自己的教学能力,那么写教学反思需要注意哪些问题呢?下面是小编整理的《勾股定理》教学反思范文,希望对大家有所帮助。

《勾股定理》教学反思范文

  《勾股定理》教学反思1

  数学学习中工作量最大的部分就是解数学习题,这也是讲所学基础知识转化为基本技能的必经之路,没有大量习题的跟进是不可能很好的形成基本解题技能的。习题课就是通过各种相关习题的练习,期望能够巩固和深化对所学基础知识的理解和认识,将这些基础知识尽快的转化为基本技能。

  今天是第十七章《勾股定理》的一节全章小结部分的习题课,在学生讲解习题的时候,讲的最不好的地方就是这个或这类习题的解题思路和解题的方法,还有就是解题的基本入手点。也就是说很多的孩子,他们在做课后习题的时候,没有在分析、思考各类习题的解题思路或方法或入手点方面投入更多的精力,这一点也是我们的`学生学习一直不能有大幅度提高的主要问题,也是制约他们有效学习的基本因素。

  新的课程理念把教师的角色定义为“教师是学生学习的组织者、引导者和合作者”,教师的主要作用是组织、引导、参与学生的课堂学习活动。而教师在学生的学习活动中更多的是一种指导的作用,而教师的指导更多的应该侧重于方法、思想的指导。教师必须介入的就是解题的思路和方法。在这一点上应该是必须的。特别是习题课,教师可以完全不讲题,但是在解题方法、思路、入手点这些方面必修介入,以提高学生学习的效率和效果。

  另外,学生讲题过程中的语言的运用也需要不断地加以指导,争取能够用较为简练的语言讲清楚一个问题的解决过程。

  《勾股定理》教学反思2

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位。

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法。但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生。

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识。从而教给学生探求知识的方法,教会学生获取知识的本领。并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的`角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积。

  本节课根据学生的认知结构采用“观察——猜想——归纳——验证——应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面。给学生自由的空间,鼓励学生多说。这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。

  《勾股定理》教学反思3

  首先,激发了学生学习数学的兴趣。

  一直以来,数学作为一门主要学科,在各阶段考试中都占有重要的地位,而且数学也是自然科学的基础学科,因此学生学习的好与坏,即直接影响的最终成绩,也对其他理科的学习有一定的影响。目前,人们获得数学知识的场所主要在数学课堂,而在中学大多数课堂教学的模式是“教师讲、学生听”的传统教学,教师处于主动地位,学生被动接收知识。教师上课前认真备课,想方设法让学生把问题想清楚。学生课堂上可以走神,对教师讲的问题可认真想,也可不去想,反正最后老师要给出答案的。于是出现了这样一种情况:数学家在“做”数学,数学教师在“讲”数学,而学生在“听”数学。然而数学光靠听,当然学生也就渐渐失去了学习数学的兴趣。都说兴趣是最好的老师,可是传统的数学教学本身就具有抽象性,光靠讲,很难不去乏味。在多媒体的教学环境下,教学信息的呈现方式是立体、丰富且生动有趣的,学生对于如此众多的信息呈现形式,表现出的是强烈的兴趣,真正做到了全方位地调动学生的多种感官参与学习,使抽象的内容变得更具体、易懂,更有利于激发学习兴趣,极大提高学生的参与度。多媒体可以产生一种新的.图文并茂、丰富多彩的人机对话方式,而且可以立即对学习的内容掌握情况进行反馈。在这种交互式学习环境中,老师的作用和地位主要表现在培养学生掌握信息处理工具的方法和分析问题、解决问题的能力上。

  其次,运用多媒体可以优化教学设计,有利于呈现过程。

  传统的数学教学,仅借助一块黑板,一支粉笔、一本书、一张嘴,如此一节课下来,不仅教师累得够呛,学生也不轻松,易产生疲劳感甚至厌烦情绪,使得课堂教学信息传递结构效率较低。而通过多媒体教学,可以为教学提供强大的情景资源,能展示知识发生的过程,注重学生思维能力的培养,多媒体课件采用动态图像演示,具有较强的刺激作用,有助于理解概念的本质特征,促进学生在原有的认知基础上,形成新的认知结构。例如这次上课,我制作了几何画板动画,学生可以自己通过变化图形,得到直角三角形三边的关系,这要比直接上课举例证明更生动,印象更深刻,也更具有说服性。

  最后,多媒体教学也有助于提高教师的业务水平和计算机使用能力。

  教师要上好一节数学课,必须要认真的备课,需要查阅大量的资料,获取很多信息,去优化教学效果。庞大的书库也只有有限的资源,况且还要找,要去翻。而网络为教师提供了无穷无尽的教学资源,为广大教师开展教学活动开辟了一条捷径,大大节省了教师的备课时间。我们可以在网上下载到很多有助于自己教学的资料,包括教学课件和试卷等。通过网络,我们还可以学习到先进的教学思想、教学理念、教学方法。经常将多媒体信息技术运用到课堂教学的教师,他的教学方法应该总能走到前列。而且在教学中使用多媒体,要求教师有相当的计算机使用能力,也是对我们现代年轻教师个人文化素质提高的锻炼。

  当然,网络在上课时,也有一些不方便之处需要去解决。例如数学讲究叙理过程的书写。但是学生的打字输入技能还不能满足,因此网络课的习题都是以填空或者选择为主,书写的锻炼还是要靠纸币去完成。可是,事在人为,任何事情都是可以解决的。我想在科技发展迅速的今天,很快就有新技术去解决这些问题。作为年轻教师,我们要敢于挑战和尝试,在教学中学习,不断提高自身的业务水平。

  《勾股定理》教学反思4

  课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多媒体教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多媒体来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。

  在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的'一种评价等等。只有老师给予学生适时的适当的评价,才能使学生充分认识到自身的价值,从而达到提高学生学习自信心的目的,反过来自信心的提高又促使学生学习的积极性大幅度的提高,真正达到从他律转为自律的目的。也只有这样才能提高课堂的教学效果,提高学生的学习成绩。

  我相信教者只有不断的反思自己的教学,不但能很好地实施新课改,实现课改的根本目的,同时能真正的提高学生学习成绩。

【《勾股定理》教学反思】相关文章:

数学《勾股定理》教学反思04-22

《勾股定理逆定理》的教学反思04-14

《勾股定理逆定理》教学反思(精选5篇)01-11

八年级勾股定理教学反思04-17

《勾股定理》的说课稿06-08

《勾股定理》说课稿12-16

勾股定理说课稿02-11

勾股定理说课稿07-05

探索《勾股定理》说课稿01-04