教学反思的意义
身为一位到岗不久的教师,我们要在教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,教学反思要怎么写呢?以下是小编精心整理的教学反思的意义,欢迎阅读与收藏。
《方程的意义》本课是人教版五年级上册第五单元的起始课,属于概念教学。对于概念的学习来说,如何理解定义是重要的,方程的意义不在于方程概念本身,而是方程更为丰富的内涵。就本节课反思如下:
1、埋新知伏笔
等式的认识是学习方程的一个前概念,因此,在认识方程之前,我先安排了一个关于“等号”意义话题的讨论。出示如:2+3=57+2=4+5,这两个题中“=”分别表示什么意思?2+3=5这个题中“=”表示计算结果,而7+2=4+5表示是一种关系,让学生对等号的认识实现一种转变,从而为建立方程埋下伏笔,也体现了思考问题着眼点的变化。但在实际教学中,由于我临时改变思路,根据课件天平左盘放着20千克和50千克的物体,右盘放着70千克的物体,学生列出算式20+50=70,我就问这个等号表示什么意思?由于这个算式有了天平具体的直观形象,学生一下子过渡到等号表示一种关系。我想让学生体会等号从表示一种过程过渡到表示一种关系,但课后我反思没有必要,以前学生已经知道等号表示一种过程,本节课主要让学生认识到等号还表示一种关系,为建立方程打下基础,所以,当学生已经在天平直观形象中认识到等号表示一种关系,就可以往下进行。所以,这个环节浪费了时间,同时我认识到课前每个环节都要慎思。
2、导概念实质。
新授环节是本节课的核心环节。我让学生以讲故事的形式生动讲解每幅图的意思,让学生经历认识方程的过程,力求让学生在愉悦的氛围里深刻的思考中,体验方程从现实生活中抽象出来。从而列出方程并认识方程。但我认为这还不够,还要对方程的内涵和外延要有更深层次的理解。于是我安排了以下4道习题:
第1题:下面这些式子是方程吗?
X×2—5=100y—2=35()+3=5苹果+50=300
通过这些习题的训练,让学生明白方程中的未知数可以是任何字母,可以是图形,也可以是物体或者画括号等。让学生体会到其实方程在一年级就已经悄悄地来到了我们的身边,和我们已经是老朋友了,只是在一年级我们没有给出它名字,()+3=5就是方程的雏形。
课后我反思这一环节应该增加一些不是方程的习题,如:2X—3>62X+9让学生在各种形式的式子中辨别方程会更好些。
第2题,出示天平图,左盘放着一个160克的苹果和一个重X的梨,右盘放着240克砝码,你能列出方程吗?很多学生列的方程是160+X=240,我就出示240—160=X这个式子是方程吗?让学生在思辨中明晰,它只有方程的形式而没有方程的实质,进一步明白方程的定义中“含有”未知数指的就是未知数要与已知数参加列式运算,从而进一步理解方程的意义。
第3题,出示了天平图,左盘放着250克砝码,右盘放着一个重a克和b克的物体,让学生列方程。通过此题的训练,学生知道了方程中的未知数可以不只是一个,可以是两个或者更多个。方程的内涵和外延逐渐浮出水面。
课后我反思,通过此题的训练,也应该让学生明白不同的数用不同的未知数表示。
第4题,一瓶800克果汁正好倒满5小杯和容量300克的一大杯,现在没有天平还有方程吗?
生1:800=300+5X
生2:800=300+y
师;为了不让别人产生误会,要写上一句话,写清X、y分别表示什么。
这样为以后学习列方程解决问题打下基础,会减少漏写设句的几率。也让学生明白,没有天平要想列出方程,要在已知数与未知数之间建立起等量关系。
本节课我以等式入手建立方程的概念,以判断方程为依托,让学生进一步理解方程的意义,以解决问题为抓手,让学生产生矛盾冲突,深刻体会“含有”未知数的真正含义,从而理解方程的意义,在层层递进的练习中加深对方程意义的理解。整个教学过程为学生提供了丰富的感性材料,使学生在一种思辨的状态中体验到方程是表达等量关系的数学模型,又为学生的后续学习列方程解决实际问题做了很好的铺垫。
【教学反思的意义】相关文章:
比的意义教学反思09-22
比的意义的教学反思02-09
《比的意义》教学反思02-03
《方程的意义》教学反思09-22
分数的意义的教学反思12-12
小数的意义的教学反思12-09
《小数的意义》教学反思10-30
比的意义小学教学反思04-13
方程的意义教学反思02-10