- 相关推荐
圆的面积教学反思优秀
身为一位优秀的教师,我们的工作之一就是课堂教学,对学到的教学技巧,我们可以记录在教学反思中,那么问题来了,教学反思应该怎么写?下面是小编为大家整理的圆的面积教学反思优秀,仅供参考,希望能够帮助到大家。
圆的面积教学反思优秀1
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。
一、动手操作,推导圆的面积公式
学生透过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。透过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。
二、多媒体辅助教学,教学资料立体呈现
透过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。透过计算机的声、光、色、形,综合表现潜力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的.实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用潜力。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学。
圆的面积教学反思优秀2
圆的面积的推导是建立上转换思想上推导出来的,在课前预习上我让学生自己准备一个圆平均分成偶数等分8。12。16。24均可,并未说明均等分以后的作用,让学生带着疑问进入到今天的学习。
学习之初,我课件出示的是工人铺人工草坪,问草坪的面积是多少平方米?这个问题,一方面让学生了解圆的面积的意义,另一方面也使他们体会数学与生活的紧密联系和学习数学的必要性,由于学生没有学过曲线围城图形的面积求解,所以课堂的开始关于草坪面积的求解,学生毫无头绪,这时再讲让学生回忆三角形,平行四边形的推导过程,学生能顺利回忆出释割补,拼接转化成他们熟悉的图形长方形。这时再顺利过渡到圆的面积的推导我们是不是也可以用这样的办法呢,就水到渠成了。
在让学生拿出自己准备好均分的圆,自己试着拼一拼中,发现大部分同学都只是均分成了八份,离长方形的还有一定的距离,这时我课件出示。16,32等分以后拼成的`图形使学生发现分的份数越多,拼成的图形的边就越直,越接近于长方形,在这种理解和掌握圆的面积公式的推导过程中,不仅培养了学生的动手能力,还培养了学生的极限思想。
在这节课的学习中发现以下几点不足之处:
一:学生的动手能力差。在让学生课前准备圆,第二天检查时仍然发现好多同学没有准备,在准备的同学中,均分到8份以上的同学又少之又少,所以在以后的教学中会事先分好组,避免出现此类事情。
二:观察能力差。由圆拼成长方形以后,观察长方形的长与宽与圆的半径和周长由什么关系时,很多同学并不能找到他们之间的关系,由此发现学生的观察能力还需要进一步的引导和培养。
圆的面积教学反思优秀3
圆的面积是小学六年级数学下学期教学的重点内容。我教小学毕业班已经十余年了,自然这节课我讲的也不下十余次了,以前在偃师市讲过,也在洛阳市也讲过。虽然每次都反映不错,可我总觉得不太满意,总觉得这节课的容量少了点,今年我决定改变以往的教学方法,增加课堂容量。
以前我是这样安排课堂结构的:谈话引入圆面积后,让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,然后教师动画演示,从而得出采用转化图形的方法,把新的图形转化成以前学过的图形来研究,使学生从中受到启发,进而想到把圆形也转化成以前学过的图形来研究。然后通过学生的动手操作、自主探究、合作交流,最后自己推导出圆面积计算公式。让学生在课堂上把8等份圆、16等份圆,先剪一剪、再拼一拼,在学生动手操作后,教师再动画演示32等份圆、64等分圆、128等份圆所拼成的图形更接近长方形。最后想一想:所拼近似长方形的长和宽与圆的什么有关系(近似长方形的长相当于圆周长的一半,宽相当于圆的半径),由长方形面积公式继而推导出圆面积公式。圆面积公式推导出来后,时间已所剩不多,学生运用公式解决问题的时间很少。环形的面积计算需要下一个课时进行。
今年我经过思考,决定这样做:让学生提前预习,小组内3、4号同学做8等份圆,1、2号同学做16等份圆,两人所做圆形的大小一样,所涂的颜色也一样,其中一个用剪刀剪好,一个不剪,以备上课时使用。
今年的课堂结构调整为:一开始由本节主题图引入,已知每平方米草皮8元钱,一个圆形草坪需要多少元钱?要解决这个问题就要求出圆的面积,由此引入新课。紧接着出示本节课的学习目标。接下来依然让学生回忆以前学过的平行四边形、三角形、梯形面积公式的.推导过程,渗透转化思想,使学生自然想到把圆形也转化成以前学过的图形来研究。然后让学生拿出自己制作的学具,先俩俩合作(1、2号合作,3、4号合作),再四人小组合作,在课桌上拼图。通过几次拼图发现,所拼近似长方形的长近似于圆周长的一半,宽近似于圆的半径。各小组展示后我用演示4等份圆,8等份圆、16等份圆、32等份圆、64等份圆……所拼成的图形,学生迅速发现,把圆等分的份数与多,拼成的图形越接近长方形,自己很快就推导出圆面积计算公式。这样就节约了大量的时间来进行公式实际运用的练习了。本节课学生不但会计算圆的面积,还会计算环形的面积……这样环环相扣,学以致用,学生学习积极性极高,既熟练的掌握了公式,又有了自主解决问题的成就感,圆满完成本节的学习目标。
不过这节课,也暴露出了一些问题:例如学生在计算平方的时候,出错较多,6的平方,应该是36,很多学生错误的把它算成12,这说明我对学情分析还不透彻,再例如学生的书写格式也不够规范等,所有这些还有待今后进一步提高。
圆的面积教学反思优秀4
圆的面积的推导是建立上转换思想上推导出来的,在课前预习上我让学生自己准备一个圆平均分成偶数等分8、12、16、24均可,并未说明均等分以后的作用,让学生带着疑问进入到今天的学习。
学习之初,我课件出示的是工人铺人工草坪,问草坪的面积是多少平方米?这个问题,一方面让学生了解圆的面积的意义,另一方面也使他们体会数学与生活的紧密联系和学习数学的必要性,由于学生没有学过曲线围城图形的面积求解,所以课堂的`开始关于草坪面积的求解,学生毫无头绪,这时再讲让学生回忆三角形,平行四边形的推导过程,学生能顺利回忆出释割补,拼接转化成他们熟悉的图形长方形。这时再顺利过渡到圆的面积的推导我们是不是也可以用这样的办法呢,就水到渠成了。
在让学生拿出自己准备好均分的圆,自己试着拼一拼中,发现大部分同学都只是均分成了八份,离长方形的还有一定的距离,这时我课件出示。16,32等分以后拼成的图形使学生发现分的份数越多,拼成的图形的边就越直,越接近于长方形,在这种理解和掌握圆的面积公式的推导过程中,不仅培养了学生的动手能力,还培养了学生的极限思想。
在这节课的学习中发现以下几点不足之处:
一、学生的动手能力差。
在让学生课前准备圆,第二天检查时仍然发现好多同学没有准备,在准备的同学中,均分到8份以上的同学又少之又少,所以在以后的教学中会事先分好组,避免出现此类事情。
二、观察能力差。
由圆拼成长方形以后,观察长方形的长与宽与圆的半径和周长由什么关系时,很多同学并不能找到他们之间的关系,由此发现学生的观察能力还需要进一步的引导和培养。
圆的面积教学反思优秀5
《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一.明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生务必明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。透过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二.以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是透过长方形推导的,三角形面积公式是透过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是透过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的'是数学思想的方法,那才是数学的精髓。
三.转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。思考学生的实际状况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。
四.公式推导
平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前。”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,透过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维潜力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
圆的面积教学反思优秀6
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
1、教学中我鼓励学生大胆猜测圆的面积
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的`理解,教学难点也顺利突破。
2、体现学生的主体性:
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题,解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
3、渗透了学习评价:
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如?”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”?学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心。
4、不足之处:
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
1、运用转化思想,解决数学问题。在教学过程中,我首先借助估算了解圆的面积的意义,再让学生利用学具进行操作,自主发现圆的面积与拼成的平行四边形的面积的关系,推导出圆的面积计算公式,降低了学习的难度;同时在教学中将“化曲为直”(即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的方法,激发学生的求知欲望)和转化的数学思想渗透到学生思维中,让学生注重知识的发现和探究的过程。
2、注重联系生活实际,开展探究性的数学活动。学生从认识直线图形发展到认识曲线图形是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已经具有了一定的逻辑思维能力,已经有了许多机会接触到数与计算、图形与几何等较为丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,因此在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识的发现和探究过程,让学生从中获得学习数学的积极情感体验和感受数学的价值。
3、练习设计有坡度,由浅入深地巩固新知。教师在指导课堂练习时,先是让学生解决马儿的困惑,也就是知道半径求圆的面积,然后是知道直径求圆的面积,在拓展提高中告诉圆的周长,解决与圆面积有关的问题。练习安排坡度适当、由易到难,使学生由浅入深地掌握了知识,形成了技能。同时还培养了学生的逻辑思维和推理能力。
4、重视图示的作用。结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
圆的面积教学反思优秀7
课堂教学中培养学生创新技能必须依靠潜移默化的熏陶方法,让学生在不断经历的学习过程中,感悟到创新思维的技巧。下头是我对本课教学的反思:
一、以旧促新
情景导入,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
二、转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。研究学生的实际情景,电脑先演示2、4、8等份圆,分别拼成一个近似的.平行四边形,让学生观察它越来越像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,最终它就会变成长方形。完成另一个重要数学思想—极限思想的渗透。
三、公式推导
长方形的面积学生都会计算:S=ab引导学生观察长方形的长和宽与圆有什么样的关系:发现长=πr,宽=r,长方形的面积=圆的面积,从而推导出S=ab=πr2
四、重视合作
重视小组学习,促进合作交流。实践证明,小组讨论有利于全体学生主动性的发挥,有利于师生之间、学生之间的信息交流,有利于不一样思维的碰撞。对圆的推导过程的创新比较适合运用合作探究的学习方式。在这节课的教学中,教师从学生手中的材料出发,让学生摆一摆,结合自我的创新说一说,经过小组合作进行探究活动,既鼓励学生独立尝试,又重视学生间的合作互助,给学生供给了多向交往的机会,提高了学生合作学习的意识。学生在学习中互相交流,提高了观察、分析及解决问题的本事。
五、培养创新
变传统的知识传授过程为“解决问题”序列的探究过程。教学过程中,创设一些对学生来说需要开辟新路才能解决的问题情境,对于提高学生的创新技能是十分有益的。六、练习设计
对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题公式公式。
七、存在问题
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。
圆的面积教学反思优秀8
圆的面积是学生在学习了圆的基本特征以及圆的周长的基础上进行探讨、学习的,因为学生在学习圆的周长的时候已经了解了化曲为直的数学思想,所以,在学习圆的认识的时候继续渗透这种思想,以及再引申到数学的极限思想。这有利于学生知识的迁移,也是学生在学习上的又一次突破。因此,在教学中我注重以下几个环节的教学:
一、回顾五年级多边形面积的计算公式推导方法,引导学生求圆的面积也可以把圆转化成学过的图形,从圆的周长到圆的面积体验其中不同本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、让学生猜测,激发探究,在了解圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来。
三、演示操作,加深理解,当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个之前准备好的圆,小组拼一拼,说一说能拼成什么图形?并思考它与圆有怎样的关系。这样,通过学生操作,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。
四、引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,我作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的.图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。
五、存在和改进的地方有:
1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0。3厘米,求圆的面积,有部分学生会把0。3的平方算成是0。9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
圆的面积教学反思优秀9
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的`平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
圆的面积教学反思优秀10
“圆的面积”一课,透过让学生用心主动参与知识的构成的全过程来获取知识,提高学生的归纳、推理的数学思维潜力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。
1、课前提出教学目标。
教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?”学生用心发言:“想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎样计算圆的面积等等”。学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不明白该如何入手的,都明确自我在讨论什么,要解决什么问题。汇报的的时候都明白围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点和最终归宿,教师只有明确教学目标才能更好的驾御课堂;学生只有明确学习目标才能用心参与,事半功倍。
2、教学形式上,应因材施教,不一样的班级和学生采取不一样的教学方法。
课堂中,每名学生都是我们的教育对象,不一样的班级,风格、特点也不一样。101班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的'面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。98班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自我解决,,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能用心参与,汇报时公式的推导过程说的很完整,练习题计算起来也不费劲。就应说98班是巡讲中讲的最理想的班级。
在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生带给充足的时光、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变潜力提高了,不一样的学生给了我不一样的体会。当然也发现了自我的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改善的地方;在提出一个问题后应给予学生必须的思考时光,不要过急。
在今后的教学中我会深深记住这次巡讲,继续改善自我的教学水平。
圆的面积教学反思优秀11
《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一.明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二.以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三.转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的.圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。
四.公式推导
平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
圆的面积教学反思优秀12
圆的面积是人教版六年级数学教学的重要内容,在学习圆的周长时,学生已经有了“化曲为直”的初步思想与体验。虽然学生对极限思想理解不够具体。但不管曲线化直线是否够直,其实并不影响近似长方形的长与圆周长的关系。理解了这点,学生通过“剪拼议”在老师引导和学生引导下,能够接受长方形长等于圆周长一半,宽等于圆的半径,长方形面积等于长乘宽,所以,圆的面积等于π乘半径的平方。
虽然解决了教学重难点,完成了教学目标。但从一个例题,学生仅仅了解了转化思想。但远远达不到对转化思想的理解运用。如何利用好课本知识,学习致用。在备课时,我刻意增加了把圆拼成近似三角形,近似梯形,课堂上,在把圆拼成近似长方形,推导出圆面积公式,完成教学任务后,我提出既然可以运用转化思想,化曲为直。把没学过的知识点转化成学过的'知识点,利用已有知识解决。那么我们能不能转化成其他已学过的图形呢?学生气氛活跃,经过拼图,很快拼成了近似三角形,近似梯形。但剪拼以后,应该怎么办?学生普遍陷入困惑,没有思路。这时,我注意开始启发学生。我们转化图形以后,怎样建立新旧图形之间的联系,需要从基本条件开始,那么,需要怎么找新旧图形之间的联系,从哪些条件着手。学生受到启发,很快从底,高,与三角形的联系推导出了圆面积公式。不仅如此,学生还趁热打铁,从长度,长,宽,高,周长,到面积推导出了各个量之间的联系。学生兴奋地说,知道了以后转化图形以后,怎么找条件之间的联系了,也知道找的顺序,从长度到面积,从面积到体积。新旧图形之间的联系应该是方方面面的,
一节课,用心探究,用心准备,不但能解决知识目标,更能拓展学生能力。从鱼到渔,条条大路通罗马,全面提高学生数学素养与探究能力。
【圆的面积教学反思优秀】相关文章:
圆的面积教学反思02-10
《圆的面积》教学反思02-17
关于《圆的面积》教学反思04-14
圆的面积教学设计及反思04-19
《圆的面积》教学设计与反思02-17
圆的面积教学反思(精选15篇)03-12
圆的面积教学反思15篇02-18
圆的面积教学反思2篇02-28
圆的面积教学反思(15篇)02-27