当前位置:育文网>教学文档>教学反思> 最大公因数的教学反思

最大公因数的教学反思

时间:2023-02-10 16:46:59 教学反思 我要投稿

最大公因数的教学反思

  身为一名人民老师,我们的工作之一就是课堂教学,写教学反思能总结我们的教学经验,怎样写教学反思才更能起到其作用呢?下面是小编帮大家整理的最大公因数的教学反思,仅供参考,欢迎大家阅读。

最大公因数的教学反思

最大公因数的教学反思1

  一.教学设计学科名称:

  北师大版数学五年级上册《找最大公因数》

  二.所在班级情况,学生特点分析:

  我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。

  三.教学内容分析:

  教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。

  四.教学目标:

  知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

  五.教学难点分析:

  教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

  教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  六.教学课时:

  一课时

  七.教学过程:

  (一)复习

  师:出示3×4=12,( )是12的因数。

  生:3和4是12的因数。

  (二)探究新知

  1、认识公因数和最大公因数

  (1)师:除了3和4是12的因数,12的因数还有哪些?

  生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。

  师:要找出一个数的全部因数,需要注意什么?

  生:要一对一对有序地写,这样才不会遗漏。

  师:照这样的方法,请你写出18的全部因数。

  生独立写后汇报:18的因数有:1、2、3、6、9、18

  (此时出示集合图)

  师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。

  生做后汇报师板书于圈中。

  (2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。

  生找出12和18相同的因数有:1、2、3、6

  师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。

  师:这里最大的公因数是几?

  生:最大是6。

  师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。

  板书课题:找最大公因数

  (此时出示集合图)

  师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论

  (生分组讨论)

  汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。

  师:请大家完成这个题。(生做后订正)

  2、探索找最大公因数的方法

  (1)列举法

  刚才我们找最大公因数的方法叫做列举法。(板书:列举法)

  请大家用这种方法找出下面每组数的最大公因数。 9和15

  (2)利用因数关系找

  师:请大家翻到书第45页,独立完成第一题。

  生汇报:

  8的因数: 1、2、4、8

  16的`因数: 1、2、4、8、16

  8和16的公因数: 1、2、4、8

  8和16的最大公因数是 8

  师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:8是16的因数,所以8和16的最大公因数就是8。

  师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)

  练习:找出下面每组数的最大公因数。 4和12 28和7 54和9

  (3)利用互质数关系找

  师:请大家独立完成第二题。

  生汇报:

  5的因数: 1、5

  7的因数: 1、7

  5和7的最大公因数是 1

  师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?

  生独立思考后分组讨论。

  生汇报:5和7都是质数,所以5和7的最大公因数就是1。

  师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)

  练习:找出下面每组数的最大公因数。 4和5 11和7 8和9

  (4)整理找最大公因数的方法

  师:今天我们学习了用哪些方法找最大公因数?

  生:列举法,用因数关系找,用互质数关系找。

  师:我们在做题时,要观察给出的数字的特征选用不同的方法。

  (三)练习

  书46页3、4、5题。生独立完成,师巡视指导。

  (四)全课小结

  这节课你有什么收获?

  八.课堂练习:

  在括号里填写每组数的最大公因数

  6和18( ) 14和21( ) 15和25( )

  12和8( ) 16和24( ) 18和27( )

  9和10( ) 17和18( ) 24和25( )

  九.作业安排:

  完成练习册上的习题

  十. 附录(教学资料及资源):

  1、教师用书:北师大版五年级数学上册

  2、数字卡片

  十一. 自我问答:

  短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?

  教学反思:

  本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。

  在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。

  找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。

最大公因数的教学反思2

  《最大公因数》这部分内容是在学生掌握了因数概念的基础上进行教学的,主要是为学习约分做准备。《最大公因数》被安排在分数的意义这一单元内,与以前的老教材有很大的区别。

  一、借助操作活动,经历数学概念的形成过程

  以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现哪些因数是两个自然数公有的,从而去揭示公因数和最大公因数的概念。而新教材注意以直观的操作活动为主,主题图中出现的是一幅铺地砖的画面,从而去创设给贮藏室地面铺地砖的情境。

  这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,通过小组合作,去铺格子图,发现用边长1厘米、2厘米、4厘米的正方形正好铺满长16厘米,宽12厘米的长方形,但是用边长3厘米的正方形能把宽12厘米铺完,但是不能正好铺完长16厘米,在此基础上,引导学生思考正方形的边长既要是长方形长的因数,也要是宽的因数。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,通过数字卡的游戏,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

  二、找两个数的公因数,提倡思考方法的多样化。

  以前的教材中安排的是利用短除法找最大公因数,现在的教材则是采用列举法,所以我在教学这部分知识时,把重点放在找两个数的公因数的方法上来,鼓励学生找最大公因数方法的多样化。从教材的练习设计出发,让学生寻找其中的规律,特殊情况下找两个数的.最大公因数是有规律的:

  (1)当两个数是倍数的关系时,小的数就是这两个数的最大公因数。

  (2)当两个数是互质数时,这两个数的最大公因数是1。

  不是特殊的情况时,如教学“找18和27的最大公因数”时,学生运用最普遍的方法是分别列举出18和27的因数,再在因数中圈出它们的公因数;这时适时引导你还有更简单的方法吗?引导学生去发现可以在18的因数中直接圈出27的因数,也可以直接运用短除法去发现。再在学生感悟、理解的基础上,进行方法的优化。一开始的时候,老师们商量还是遵循教材的意图,既然新教材没有讲到短除法,我们只是介绍,不重点掌握,但是作业出来后,老师们发现,有的学生首先连因数都找不全,既是找全了,也没有找出最大的公因数,在这种情况下,看来教学短除法还是非常有必要的!

  三、课后反思:

  这节数学课我的感受很深:第一、新教材的优势,有利于培养学生的数学抽象能力。例1的引入概念与原教材不同例题前创设了铺地砖的问题情境,由实际生活抽象出概念而不是利用直观教具和学具引入概念。这样处理的好处是便于揭示数学与现实世界的联系、有利于学生理解公因数、最大公因数概念的现实意义、有利于培养学生的数学抽象能力。第二、相信学生是最棒的!第三、小组学习要给学生充分的交流与研究的时间。第四、教师要引导学生自己去探索、去发现,精心设计情境和问题,使学生充分展开思维活动空间,在问题的发现过程,方法的总结过程发展思维能力。

最大公因数的教学反思3

  教材共提供了三种不同的方式求两个数的最大公因数,方法一:分别写出两个数的因数,再找最大公因数;方法二:先找出一个数的所有因数,再看哪些因数是另一个数的`因数,最后从中找出最大的;方法三:用分解质因数的方法找两个数的最大公因数。我还给学生补充了用短除法求最大公因数。这么多方法,教师应该向学生重点推荐哪种呢?教材中补充拓展的分解质因数方法学生是否都应掌握呢?短除法是否都应掌握呢?方法一与方法二相比,由于第一种方法便于观察比较,十分直观。因此,在课堂教学中许多学生暗暗地就选择了它。方法二与方法三相比,在数据偏大且因数较多时,如果用分解质因数的方法来求最大公因数不仅正确率高,而且速度也会大幅提高。但是用分解质因数的方法来求最大公因数对一些学生来说又有相当的难度,至于为什么要把两个数全部公有的质因数相乘,一些学生还不太明白。

  在教学中,我认为教师不能仅仅只是介绍,还有必要让学生们掌握这种方法技能。用短除法求最大公因数我感觉比较简单,学生好接受,好理解。但是短除法求最大公因数一直要除到所得的商是互质数时为止。如果用此法,学生必须首先认识“互质数”,并能正确判断。虽然有关“互质数”的内容教材83页“你知道吗”中有所涉及,相应知识的考查在练习十五第6题中也有所体现。至于学生选用哪种策略找两个数的最大公因数,我并不强求。从作业反馈情况来看,多数学生更喜欢方法一,但是我们要提醒学生养成先观察数据特点,然后再动笔的习惯。如两个数正好成倍数关系或互质数关系时,许多学生仍旧按部就班地采用一般策略来解决,全班只有少数的学生能够根据“当两个数成倍数关系时,较小数就是它们的最大公因数”的规律快速找到最大公因数。在这一方面,教师在教学中要率先垂范,做好榜样。在巩固练习过程中,也应加强训练,每次动笔练习之前补充一个环节——观察与思考。使学生除了掌握基本策略方法外,还能灵活快捷地求出一些特例来。

  这节课本来想把教材练习十五的习题讲解完,但是时间不够用了,只好下节课再讲。

最大公因数的教学反思4

  这部分内容是在学生掌握了因数、倍数概念的基础上进行教学的,主要是为下续学习约分作准备。教材先创设了一个剪纸的问题情境,从实际生活中抽象出概念。这样处理的好处便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数的概念及现实意义,也有利于培养学生的数学抽象能力。但是将解决问题与概念引入结合在一起,教学上自然会有一定的难度,所以我将主题图的自由探索与尝试选正方形的大小来剪。适当降低了一些难度并提高了教学的效率,最后的效果还是不错的,很容易就引入了公因数和最大公因数的概念。

  在现行《课标》中有关求最大公因数的.要求是:“能找出两个自然数的公因数和最大公因数”。重在“找”,而现行教材的分子分母都比较小,学生熟练了以后都能准确的进行约分,关键还是在练习的力度上多下功夫。

  融入生活实际。我把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长28米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。

最大公因数的教学反思5

  1、创设情境引入新知。

  我在教学时,改变教材中从单调的计算引出概念的做法,而是创设情景,通过生动有趣的画面,吸引学生积极思维,其特有的感染力和表现力,能直观生动地对学生心理起到催化作用,有效地激发了学生探究新知识的兴趣,使教与学始终处于活化状态。

  2、合理利用教材。

  “循环小数”是学生较难准确地掌握和表述的一个概念,特别是表述其意义的“从某一位起”、“依次”、“不断”、“重复出现”等抽象说法,学生难以理解。这节课的内容也较多,我打破教材编排顺序,将教学内容重新整合,灵活处理教材,先以王鹏喜欢跑步引入计算400÷75让学生计算发现商中重复出现一个相同的数字,再以王鹏喜欢游泳引出计算25÷22让学生计算发现商中有两个不断重复出现的数字。从而引导学生发现发现商的特点,引出“循环小数”。这样可以将难点分散,各个击破。

  3、引导学生探索,让学生成为真正的参与者。

  《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”数学学习不应是简单个体接受知识的过程,而是一个主体对自己感兴趣的且是现实的生活性主题的探究与发展的过程。在新课中,我首先从生活中的`现象入手,再引导学生主动探究数学中的问题,通过让学生选择自己感兴趣的信息试算、观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。

  当然,在这节课中也有很多不足之处。如我在教学中过多地注意预设,使教学放不开手脚,环节安排趋于饱和,这样压缩了学生思维空间,在今后的教学中,特别是环节预设应在于精、在于厚实。

最大公因数的教学反思6

  这节课是在学习了公因数和最大公因数之后教学的,在实际教学中我发现学生不能灵活利用最大公因数的知识解决实际问题,有的同学一看到求最大、最多、最长是多少,便不假思索,直接求它们的最大公因数,至于为什么是求最大公因数,有的同学不理解,或是知其然而不知其所以然。基于此,我设计了这节课。在教学中,我努力做大了以下几点:

  1、借助操作活动,让学生形成解决问题的.策略。在教学中,我以学生感兴趣的六一节活动贯穿始终,让学生在积极、欢愉的氛围中学习。通过给学生提供具体的材料,让他们利用已有的材料,剪一剪、画一画、折一折、想一想、算一算,用不同的方法来解决问题。从动手操作中理解要解决这个问题,实质上是求已知数量的最大公因数,并结合课件演示明确为什么是求最大公因数。提升了学生的思维层次。再通过后面的尝试应用,练一练,灵活应用等环节进一步明确思路。学生在解决问题的过程中获得感悟,初步形成解决此类问题的策略。

  2、预设探究过程,增强学生的主体意识。尝试应用环节更是学生自主探究的广阔平台,我抛出问题后让学生独立探究。为了解决问题,学生充分调动已有知识经验、方法、技能,八仙过海各显神通,找出各种求正方形的边长最长是多少的方法,从中再次体验到要解决这个问题实质上还是求已知数量的最大公因数。整个教学过程学生能主动的建构知识,而不是简单模仿,充分体现了学生是课堂学习的主人,课堂是学生学习的天地。

  3、教学中我充分发挥小组合作学习能力,给学生充分的交流与研究时间,让学生在交流展示中明确解决此类问题的策略,达到把复杂的问题变得简单,把简单的问题变得有厚度。

最大公因数的教学反思7

  《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

  对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。

  一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。

  《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:

  “今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”

  学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。

  二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛

  “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的.猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?

  三、让学生进行独立思考和自主探索

  通过学生的猜测,我把学生的提出的问题进行了整理:

  (1) 什么是公因数与最大公因数?

  (2) 怎样找公因数与最大公因数?

  (3) 为什么是最大公因数而不是最小公因数?

  (4) 这一部分知识到底有什么作用?

  我先让学生独立思考?然后组织交流,最后让学生自学课本

  这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。

最大公因数的教学反思8

  本课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过找公因数的过程,让学生懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,可以进一步引导学生观察分析、讨论,让学生明确找两个数公因数的方法,并对找有特征的数字的最大公因数的特殊方法有所体验。在此过程中要注意鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,但不要归纳成固定的模式让学生记忆。对于找公因数有困难的学生,教师要从方法上作进一步指导。《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的'教学流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥,课堂成了学习的天地。

最大公因数的教学反思9

  《两三位数除以一位数》商是两位数是在学生学习了商是三位数和有余数除法的基础上进行的,它是学习除数是多位数除法的基础。因此要在引导学生解决具体问题的过程中,切实理解算理,掌握计算方法。

  1、联系旧知,激发兴趣

  本节课我有意识的在一开始设计了抢答环节,让学生判断大屏幕上几道题目的商的位数,进而发现不同,激发兴趣,引入本节课的`学习。从效果上看,学生在判断的过程中比较感兴趣,并能初步感受与旧知的联系与不同,达到了预期的目的。

  2、放手学生,设置大问题

  本节课我在这方面做的不好。在摆小棒理解算理环节,我领的比较多,学生和老师一问一答,比如:“先分什么?再分什么?每份是多少”等,虽然学生最后也弄明白了该如何分小棒,但学生的能力没有得到提高。在于老师的建议下,在重建设计中,我会注意放手,设置大问题。比如:“请同学们看着大屏幕上的小棒,想一想应该怎样分呢?先自己想一想,然后同桌交流一下。”让学生带着问题思考,在思考中考虑摆小棒的全过程,而不是想一开始那样,思路被割裂开了。之后再全班交流,教师也可适当引领点拨,但这和我之前的设计感觉就不一样了,后者更能体现学生主体地位。在这方面,我今后还应提高意识,不断实践。

  3、设计新颖的练习题,增多练习内容。

  计算教学,单纯的让学生计算势必会使学生产生厌倦。我联系学生实际和生活实际,设计出多种多样的练习题,比如:计算之后让学生思考问题“想一想:三位数除以一位数,什么时候商是三位数,什么时候商是两位数?”或让学生“火眼金睛”辨别对错,或让学生在解决实际问题中说一说先算什么再算什么,感受解决实际问题的一般环节,将思路渗透到日常教学中,或在最后让学生根据所学再来一组比赛等,结合学生不同的计算阶段提出不同的要求和练习形式,使单调枯燥的计算练习变得生动有趣,达到了较好的教学效果。

  我将以本次讲课为契机,在今后的教学中应用本次活动学到的知识,加以实践,不断提高自身的教学水平。

最大公因数的教学反思10

  一、分析基础知识,准确制定教学目标。

  本节课是在学生已经理解和掌握因数、倍数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。我根据教材的编写特点准确地制定了教学目标,即理解公因数及最大公因数的意义。知道任意两个数都有公因数;能够采用枚举法找到两个数的最大公因数。通过动手、观察、思考等教学活动,从拼摆过程中发现公因数,再通过进一步探究明确公因数及最大公因数的含义。

  二、在现实的情境中教学概念,借助直观操作活动,经历概念的形成过程。

  以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。而本节课注意引导学生通过找出已知面积的长方形的长和宽的.长度,确定怎样使这样的两个长方形拼成一个新的长方形。其次,引导学生观察这样的几组数据与长方形面积之间的关系——右面的这些数据都是左面这些数据的因数。三是揭示出公因数和最大公因数的含义——指出用红笔标出的这些数据是左面这两个数的公因数,找到这里面最大的一个公因数,完成由形象到抽象的过程,把感性认识提升为理性认识。

  三、把握内涵外延,准确理解概念的含义。

  概念的内涵是指这个概念的所反映的一切对象的共同的本质属性。公因数是几个数公有的因数,可见“几个数公有的”是公因数的本质属性。因此在因数的基础上学习公因数,关键在于突出“公有”的含义。本节课突出概念的内涵是“既是……也是……”即“公有”。教学中,我首先让学生在练习本上找出12和16的因数,然后借助直观的集合图揭示出“既是12的因数,又是16的因数”这句话的含义,帮助学生进一步理解公因数和最大公因数的意义。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。

  概念的外延是指这个概念包含的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,这对加深概念的认识很有好处。本节课我注意利用反例,来凸现公因数的含义。在用集合图法来表示12和16的公因数的时候,找到填写错误的学生的例子,提示学生注意:并集里填写的是两个数的公因数,而没有交在一起的集合图中,只填写这两个数的都有的因数,从而进一步明确公因数的概念。

  四、教学中的不足:

  教师的提问有时指向性不是很强,学生不能很快地明白老师的意图,影响了学生的思考,须进一步提高。在教学“两个长和宽都是整厘米数的长方形的面积分别是2平方厘米和3平方厘米,这两个长方形的长、宽分别是多少?”时,学生有些困难,我应该让学生动手在本上画一画,帮助学生找到,降低难度,这点考虑不周,没有切实联系实际。

  自己要学的东西还有很多,应注意提高自身修养。多阅读、多听课,努力提高自己的教学水平,更好地为学生服务。

最大公因数的教学反思11

  教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

  反思:突出概念的内涵、外延,让学生准确理解概念。

  我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。

  由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的'含义。概念的外延是指这个概念包括的一切对象。

  运用数学概念,让学生探索找两个数的最大公因数的方法。

  例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。

  充分利用教育资源,自制课件,协助教学。

  限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。

  本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。

最大公因数的教学反思12

  本课是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。

  第一节课,根据教材是以铺地砖的'生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的公因数的必要性。教材主要的教学方法是先分别求出两个数的因数,并按照从大到小的顺序排列出来,从而找出两个数的公有因数,称为这两个数的公因数,其中最大的数就是这两个数的最大公因数。通过例1的教学后,我引导学生总结出求两数的公因数以及最大公因数的方法。练习时发现部分学生还是容易在找一个数的因数的有疏漏,导致求出来的公因数和最大公因数出错。

  第二节课,我引入了求最大公因数的另一种方法,分解质因数法,介绍用短除法求两个数的最大公因数。这种方法学生掌握起来比较容易,但也发现部分学生没有除尽,最后的商不是互质数,导致找错最大公因数。

  不过相对于第一钟方法,第二种方法在书写上更简便,学生解题时还是比较容易理解,写起来也比较简洁,大部分学生在求几个数的最大公因数时还会选择第二种方法。当然,我还是鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。

最大公因数的教学反思13

  公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。

  我是这样组织教学的:

  在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。

  教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。

  思考:

  1.增强师生和生生之间的互动

  在教学过程中各个环节的`衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。今后的教学中,在这一点上要都多下功夫。本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。

  2.方法多样化和方法优化

  在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。同时还要引导学生进行方法的比较和优化。

最大公因数的教学反思14

  本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。

  上课的第一环节,是复习两个数的公因数和最大公因数的意义。在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。学生说出了许多组数,找出了它们的公因数和最大公因数。在学生举例的过程中,对它们的`意义有了更深的理解。我择其四组板书在黑板上:4和5,5和6,5和7,7和9。让学生观察,这四组数有什么特点。我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。 “我发现两个数中只要有一个质数,它们的最大公因数就是1。”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。我让学生判断他的观点是否正确。在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的最大公因数不是1。”又有学生提出3和6,5和10等。我接着又让学生观察,这几组数又有什么特点。通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。

最大公因数的教学反思15

  “公因数和最大公因数”是第三单元第三课时的内容,在此之前,已经学过了公倍数和最小公倍数,掌握了公倍数和最小公倍数的概念和求法,这节课的教学过程与公倍数的教学非常相似,吸取了公倍数教学时的教训,本节课教学公因数概念的时候,我先让学生读题,说清题意,再进行操作,这样以来学生是带着问题去操作的,不像公倍数时部分学生题目都理解不了就开始动手操作,不能完全达到本题操作的目的。在教学求公因数方法的时候,我也让学生与公倍数求法进行了比较,通过比较学生发现了公倍数是无限的,没有给定范围时要写省略号,而公因数是有限个的,要写好句号,表示书写完成;还发现找公倍数时是找最小公倍数,而找公因数是最大公因数;还发现求公因数的方法中是先找小数的因数再从其中找大数的因数,而求公倍数却是利用大数翻倍法,找出来的是大数的倍数,再从其中找出小数的倍数。不仅两个例题的教学过程相似,连练习的设计也是相似的,所以学生在完成练习的时候,已经对练习的形式较为熟悉,练习完成的较好。正因为两节课太相似,所以小部分学生已经有些混淆了,分不清怎么求公倍数,怎么求公因数,这个是在以后教学中要避免的。

  这节课的作业也能反映一些本节课上的问题,在教学公倍数的时候,我没有强调集合中元素的互异性,作业中不少学生在公倍数一栏填写的数字,同时出现在左右部分的集合中,在这节课练习时,我特意强调了这一点,希望学生们能记住,在完成练习五的`时候还发现,部分学生对于2、3、的倍数的特征记得不清楚了,所以在判断是不是它们的倍数的时候还有一些人用大数去除以2、3、5的方法来判断,耽误了很多的时间,这是我上课之前没有想到的,要是在做这一题之前先让学生回忆2、3、5的倍数的特征,想必他们会节省更多的时间。

【最大公因数的教学反思】相关文章:

《最大公因数》教学反思03-31

最大公因数教学反思03-06

公因数和最大公因数教学反思04-22

《公因数和最大公因数》说课稿11-13

《最大公因数》说课稿12-19

《最大公因数》的说课稿12-19

《找最大公因数》说课稿12-24

最大公因数说课稿12-21

最大公因数说课稿11-11