乘法分配律教学反思
作为一位优秀的老师,课堂教学是重要的工作之一,写教学反思能总结我们的教学经验,写教学反思需要注意哪些格式呢?下面是小编收集整理的乘法分配律教学反思,欢迎大家分享。
乘法分配律教学反思1
本节课的教学我主要以几何直观为切入点,引导学生通过画一画,算一算等学习活动,小组合作,共同经历乘法分配的探究过程,借助图形探知、理解乘法分配律。
1、问题情境的创设需更贴近学生的生活。
试讲过后与大家的感觉一样,学生对设计草莓大棚的这个话题不是特别感兴趣,接受工作室友们提出的宝贵意见后,想把情境创设改为设计学校的操场。由于学校里孩子们数量每年都在增加,孩子们喜欢的小操场越来越挤,想要扩建这个长方形的小操场,怎么办呢?这个话题与孩子们的生活息息相关,应该比上一次设计的话题更容易引起他们的关注。
2、教学的设计要尊重已有的知识经验。
本节课设计一始,所需的计算方法与原来学过的计算长方形面积有关。长方形的面积长乘宽,即使个别学生忘记也很容易唤醒。我鼓励学生大胆去猜想, 在计算之前先要在头脑中勾勒出长方形的模样,激发学生在画图中梳理题中的数学信息。接下来的三次探究过程,先是教师设定长方形增加的长,再次是学生自己设定长度,再到后来自己设定三个量,给学生充分的想象和发挥空间,发挥学生主体的主动作用,即使学生在研究中遇到困难,有小组合作交流讨论环节也使学生之间有了互相学习和提高的过程。
学生在已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的'特点,从而概括它们的规律。在得出结论的过程中,有的同学用到了文字说明,也有同学是符号表示,还有的是字母表示,无论出现得出的哪种结论,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
在学生展示汇报的过程中,虽然字母表示的方法更清晰,大家更喜欢,但课后觉得能用文字表述其实是更难的一件事,对这样的孩子应该在课堂上再多给学生一些鼓励与肯定,学生的学习兴趣会更浓,他们学到的东西可能也会更多。
3、在具体操作中完成由具体到抽象的思维演练。
孩子们自己填写的数字各不相同,在不同的计算方法和有不同的计算结果中,使学生感受到大量在实例计算后,大胆地完成了由猜想到验证的过程。猜想是科学发现的前奏。学生的学习活动中不能没有猜想,否则,主体性探究活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生学习与掌握探索方法的过程,是培养学生学习品格的过程。
在研究的过程中,如何利用小组合作资源,把研究中遇到困难的,兴趣保持不下去的同学的积极性再调动一下就更好了。
课堂学习的过程,一切以师生间,生生间建立的平等交流这个平台才得以顺得完成,教学过程是师生共创共生的过程,师生成为共同建构学习的参与者。在上述的教学活动中,教师让学生充分经历学习过程,调动学生学习的热情:想象——猜想——举例——验证,在欣赏学生的“闪光”处给学生“点拨”。师生在课堂交流中才得以共同成长。
乘法分配律教学反思2
乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。
一、创设师生竞赛,激发学习欲望。
上课教师先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。
结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。
这样的导入让学生充满了求知的欲望,激发了学习的热情。
二、设计思考问题,学生自主探究。
出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。
讨论:
1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?
2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。
生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
三、练习有坡度,前后有呼应。
在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的'内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的思维能力。
总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。
乘法分配律教学反思3
一、让学生从实质上理解乘法分配律
在乘法分配律的教学中,如果只求形式把握不求实质理解,一方面从认识的角度看是不严谨的(形式上的不完全归纳不一定得出真理),另一方面很容易造成学生不求甚解、囫囵吞枣的不良认知习惯。如果满足于从形式上掌握乘法分配律,对于学生的后续发展也极为不利。因此,在教学时先出示了这样一道例题:一件茄克衫65元,一条裤子35元。王老师买5件茄克衫和5条裤子,一共要花多少元?学生用了两种解答方法即:(65+35)×5=65×5+35×5。借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。
二、突破乘法分配律的教学难点
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破教学难点,我设计了一系列的练习。
1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□……
2、在相等的`一组算式后面打“√”:如16×7+24×7(16+24)×7□……
在这一组题目中教者重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说着一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的式子。通过练习学生对乘法分配律有了进一步的认识,又让学生照上面的样子写出的几个这样的等式,最后归纳出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
实际上课堂时学生对于能否找到反例的活动很感兴趣,可以尝试让学生也提几个反例,经过讨论逐个否决,在这样的过程中,学生的等式变形能力能够得到很大提高,有益于加深对乘法分配律的认识。
乘法分配律教学反思4
乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
在教学中,通过这次植树情境让学生感到数学就是从身边的生活中来的,激发学生学习的热情。“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
重点是理解算式的意义,我们在引导中进行总结(4+2)个25的和也可以写为25分别乘以4和2,再把他们的'积相加的形式,接着让同学们再次深化理解自己尝试写出几个类似的算式,由于是网上教学,没办法直接展示学生的算式,于是我在大屏幕上写出几个算式,让同学们来说一说他们的观察到的算式,从而总结出乘法分配律的规律。进而通过计算,发现运用乘法分配律可以使得计算更加简便。
这节课的不足:
当我们运用乘法分配律进行练习的时候,我发现学生在做题时会错误的把中间的+抄写成×,导致错误。这说明学生没有完全对乘法结合律和乘法分配律进行区分,还需要再次进行强调。
这节课上对学生的主题地位有所忽视。虽然是网课教学,没办法与学生共同在一间教室,没办法与学生面对面教学,但是顾虑到时间的限制与学生的互动,留给学生的思考的时间不够充分,接下来在教学设计时可以减少授课容量,留给学生充分的思考时间。
乘法分配律教学反思5
师:(出示挂图)仔细观察,从图中你获得哪些信息?
买这些衣服,戚老师一共要付多少元呢?你能用两种方法列出综合算式吗?
生:(65+35)×12=1200(元)
生:65×12+35×12=1200(元)
师:每个算式的结果都是1200元,那么这两个算式有什么关系?
生:(65+35)×12=65×12+35×12
师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?
(学生小组讨论)
师:指名学生回答。
生:一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65+35)×12=65×12+35×12。
师:说得真棒,谁能概括地说一说。
生:12个65加12个35等于12个65与35的和。
师:请同桌互相说一遍。
师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)
(过一会儿,一只只小手举起来了,教师指名回答。)
生1:(15+25)×8=15×8+25×8。
生2:a×(5+2)=a×5+a×2。
生3:(+▲)×■=×■+▲×■。
……
师:同桌检查一下,对方写的等式两边是否相等?
师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。
生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。
生2:我们小组从乘法的意义理解发现:比如(15+25)×8=()×8+(
)×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。
……
师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。
师:像(65+35)×12=65×12+35×12这样的等式,你能写出多少个?
生:无数个。
师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?
学生尝试用字母表示乘法分配律,教师巡视。
生:a×(5+2)=a×5+a×2。
生:(+▲)×■=×■+▲×■
生(a+b)×c=a×c+b×c。
……
师:你们真棒!今天我们发现的规律就是乘
法分配律。乘法分配律常表示为(a+b)×c=a×c+b×c。
你们能用自己的话说说什么是乘法分配律吗?
指名学生回答。
师小结:两个数的`和乘第三个数,可以把两个数分别和第三个数相乘,再求和。
教后反思:
1、关注学生已有的知识经验
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
2、提供自主探索的机会
一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。
在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。
乘法分配律教学反思6
《乘法分配律》是人教版四年级第三单元的内容,学生已经学过了加法交换律和结合律、乘法交换律和结合律,因此总以为学生对这一部分的知识并不陌生,就简单地设计了复习,回顾学过的运算律,再让学生发现运算律在简便计算中的运用,接着就出示了新课的例题,让学生从例题中寻找乘法分配律的规律,再通过举例,比较发现乘法分配律并用字母表示出来,基本完成本节课的新授,最后通过巩固练习让学生认识乘法分配律并在计算和实际生活问题中的运用。但上完课,发现课堂出现了很多的问题,学生对乘法分配律和乘法结合律的混淆。那么在教学中应该注意什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c。这时教师可提出为什么两个算式是相等的`?这里不仅从解题的角度理解,如(2+7)×3=2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×3
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?
3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解
如:125×88;101×89你能有几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①竖式计算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到“用简便计算法进行计算”成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的
4、多练
针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。
对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
这样一来,让学生亲历观察、归纳、猜测验证推理等探究发现的全过程,使学生不仅发现了乘法分配律的知识的内含,而且学习了科学的探究的方法,数学思维能力也得到了发展。
乘法分配律教学反思7
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……。
现在的课程改革重点之一就是如何促进学生学习方式的变革,让他们可以用自己的眼睛去观察,用自己的脑子去思考,用自己的语言去表述,成为一个独特的个体。并强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。本着对新课标的学习和认识,我对“乘法分配律”这一堂课在实践理念方面作如下的探索。
1.在对本节课的教学目标上,我定位在:(1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。(2)初步感受乘法分配律能使一些计算简便。(3)培养学生分析、推理、概括的思维能力。
2.在本节课的教学过程的设计上,我尽量想体现新课标的.一些理念。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。在课的开始,我通过口头讲故事创设情境“森林超市”,“招聘广告”,设置悬念,激发学生的学习欲望和学生学习数学的兴趣:你们去过森林超市吗?想不想去看一看?小狗开了一家森林超市,想通过招聘广告应聘一名营业员呢!我们一起来看一看。小兔、小猪看到广告后,前来应聘,小熊决定进行考试过三关,择优录取。小狗还想邀请同学们一起参加这个活动,你们愿意吗?学生已迫不及待地说想。
接着我分别让班上的一组、二组分别和三组、四组扮演小猪和小兔进行解题比赛,学生学生们积极性极高并争先恐后地做题,同时让学生说说你是怎么做的?学生尝试通过不同的方法先后得出:(1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);(2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);(3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。此时教师让学生观察通过不同的计算方法得到了相同的结果,这两个算式用“=”连接。通过不同计算得到相同的结果,让学生从中初步感受了乘法分配律的模型。为了让学生切实体会生活中确实有乘法分配律的知识。在此我又设置了一个问题:上面两题的结果,左边和右边的式子也有相同的形式,这里是否存在着规律?让学生带着一点疑惑,又急着想证明的愿望继续探究。这时学生心中已具有了乘法分配律的模型。当学生有了上面的真实感受,让学生列举出类似的等式已水到渠成。让学生观察刚才得到的一系列等式,小组讨论:从这些等式中你发现了什么规律?并要求同桌尝试合作学习进行一人任意找三个数写出等号左边的式子让另一个写出等号右边的式子,几题过后再交换写式子,让他们亲自感受乘法分配律,从而概括出乘法分配律。
3、在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×7)×4=25×4+7×4,让学生通过争论明白当(25×7)×4时用乘法结合律简算;当(25+7)×4时用乘法分配律简算。在填空题目中,我设计了①(10+7)×6=()×6 +()×6;②8×(125+9)=8×()+8×();③7×48+7×52=()×(+)通过练习让学生更深入地理解乘法分配律的概念,也为后面利用乘法分配律进行简算打下伏笔。
总之,在本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来,而且在生活情境的创设中对情境的趣味性、兴趣性、情境性不能很好的体现,情景创设题目有点多,需减少一题,留给学生思考的时间还不够。这一系列问题有待我在今后的教学过程中不断的改进和提高。最后,衷心地感谢各位领导的指导并提出建议!
乘法分配律教学反思8
这是我对自己上的有关乘法分配律的一课的教学反思,我让她们每次上完课都写一写反思,我想这样她才能真正从实习中有所收获。她的教学反思如下:
乘法分配律不仅是本章的难点也是四年级学习的重点和难点。它是学生学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,它的重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。因此在教学过程中,怎样引导学生成为重中之重。我的教学思路大体为以下几点:
第一:在开始的课上,与学生一起回忆了乘法交换律与乘法结合律,做到温故而知新,不至于学生了解乘法分配律时与前两个运算定律相混。
第二:通过询问学生关于校服的问题引入需要解决的问题,在此环节中,我询问了学生们现在的校服是什么样子的,接着呈现了,事先准备好的班级同学穿校服的照片,这样,学生们就会体会到,这堂课与他们息息相关,然后我又问他们想拥有什么样的校服,接着又呈现了搜索到的几张关于校服的个性图片,于是探讨乘法分配律之旅,轰轰烈烈的开始了。
第二:教材中此出问题的主题图是关于植树的问题,但考虑到学生的理解能力有限,我将题目改成校服上衣价钱,校服裤子价钱与总价钱的问题,这样一来,更贴近学生生活。
第三:让学生列示计算的同时请两名同学上黑板做题,这样就节省了一些时间,但仍有不足。
不足及改进:
第一:学生在黑板上书写很是不规范,占去了黑板的很大空间,导致我在询问其他同学答题步骤及板书时无处可写,黑板书写有些许乱。
第二:在两名同学书写完下去之后,我接着就询问了其他同学的不同做法,于是学生只要有一点计算步骤不同的就举手回答,导致回答不完,但各种方法又相似,黑板罗列太多,学生分不清主次。我想如果在来那名同学书写完后,先不让他们下去,而是留在讲台上解释自己的`先算什么后算什么,这样下面的同学也就晓得自己的解题步骤到底属于哪一种,从而也可以节省部分时间。
第三:在解释乘法分配律意义方面不清楚,几种理解方法过于着急地解释给学生,导致学生听得的迷迷糊糊。在这方面,我应该更加清晰地理清自己的思路,该怎样循序渐进的向学生解释这种运算方法的意义。如先理解在题意中先算什么后算什么,再脱离情境观察数的特点,先算的谁和谁的积又算谁和谁的积,最后再怎样,自然而然,学生会发现有共同的数,进而引导理解30个45加上20个45等于50个45。
总之乘法分配律确实并不是很好理解,再加上老师不太能抓住重点,虽然课前我一再给她讲这地方那地方如何引导和如何讲,但是她还是被学生给带偏了,讲解的不透彻,再加上不会维持学生听课,所以学生掌握的不是很好。事后我又讲了练习课加以巩固,但是先入为主,并且也不像例题讲的那么详细,还是有几个孩子比较糊涂。所以单元测试中乘法分配律出错最多。
乘法分配律教学反思9
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的`知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
乘法分配律教学反思10
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是四年级学习的重点,也是难点之一。也是一节比较抽象的概念课,教学时我根据教学内容的特点,为学生提供了多种探究方法,激发了学生的自主意识。
上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。从而让学生知道乘法分配律给大家计算带来的便利。从而感受数学的美。
这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。
乘法分配律在乘法的运算定律中是一个比较难理解的定律,因此在上课前我作了充分的准备。因为学生在三年级时已经学过求长方形周长的两种通过一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传般。课本中关于乘法分配律只有一个植树的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。
乘法分配律大致上有这样三类:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。
二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用惩罚的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。
以这个为切入点,从而比较顺利地引入新课,正好那天是植树节所以我又创让“打比方”成为数学课堂的闪光点。
凡是教过小学数学乘法运算律的教师都会体会到“乘法分配律”是乘法运算律中最难掌握的。学生在做练习题中错误最多。所以课前我对教材进行了身队深度的剖析和思考。最后想出了用打比方突破课堂难点。虽然我们的“比方”有时看来似乎有点不恰当,但是这种比方对开发学生的`想象力,推理能力以及拓展思路竟达到了意想不到的效果。我是这样做的:
我由解决问题引出乘法分配律的等式,但我没有急于给学生灌注这叫乘法分配率,而是写下了这样一个式子;{姐姐+我}×妈妈=姐姐×妈妈+我×妈妈然后提问:“谁能解释为什么我这样写吗?思维活跃的学生马上就会回答:“因为妈妈是你和姐姐共有的,所以你和姐姐都有资格和妈妈在一起。”......学生们的学习兴趣一下被调动起来了,他们明白了数学原来也是通俗易懂的。然后我再让他们阅读教材,给这个看似“不恰当”的比方定性为“乘法分配率”。归纳整合为字母算式:(a+b)×c=a×c+b×c,这时我再此让学生展开联想,让他们学着老金刚怒目在自己身边和生活中进行举例,学生很快举出(上衣+裤子)×人=上衣×人+裤子×人,(铅笔+圆珠笔)×本子=铅笔×本子+圆珠笔×本子等例子等不是十分贴切,但却富有情趣,孩子在编例子的同时,其实已把握了乘法分配律的特征,学生就不会出现(a+b)×c=a×c+b的错误,在生动活泼的“打比方”中,既带给了学生体验学习的快乐,又让我们枯燥深奥的数学概念成为形象而具体的理解形成,这种教法我在教“乘法交换律”时也用到过,我在结尾时把它总结为“左右搬家”然后讲了个铺子搬家的故事,学生们在津津乐道的故事中,在形象贴切的“打比方”中学懂了数学知识,收到了良好的效果,真正使数学课堂贴近生活。
设了这样一个情境,“一共有25个小组参加植树 乘法分配律在乘法的运算定律中是一个比较难乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出问题:共有多少名同学参加了这次植树活动?通过两种方法和算式的比较,使学生初步感知乘法分配律。
展示知识的发生过程,引导学生积极主动探究。先让学生根据问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,让学生观察,初步感知“乘法分配律”。然后要求学生照样子说出几组这样的等式,引导学生再观察,让学生说明自己发现的规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。
最后让学生比较乘法交换律和结合律与分配率的最大区别,前者只在连乘的同一级运算中运用,后者是在两级运算中运用,所以,看清题目是一级运算还是两级运算对决定算法非常重要。这节课虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好,在后一阶段依然要加强练习,边练习边总结算法,使学生达到熟能生巧的程度。
乘法分配律教学反思11
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律并能初步应用这些定律进行一些简便计算的基础上进行教学的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,因为乘法分配律不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。乘法分配律在乘法的运算定律中是一个比较难理解的定律,通过这一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传。课本中关于乘法分配律只有一个求跳绳根数的例题,但是练习中有关乘法分配律的`运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。
乘法分配律大致上有这样三类:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。
二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用乘法的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。
乘法分配律教学反思12
多年来,我一直从事小学数学教学工作,每当教授学生学习运用乘法分配律进行简便计算时,心里多少都有些发怵,因为这是一节比较抽象的概念课,学生极易混淆概念。这节课是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是学习这几个定律中的难点,它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。于是,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行仔细观察,比较和归纳,大胆提出自己的猜想并且举例进行验证。
乘法分配律是四年级下册的教学内容,对本课的教学目标我定位在:
1、从学生已有的生活经验出发,通过口算、观察、类比,归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、在教学中渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题、解决问题的能力,提高学生对数学的应用意识。
新教材的一个鲜明特点就是,不再仅仅给出一些数值计算的实例,让学生通过传统的计算方法,发现规律,而是给学生出示一些熟悉的问题情境,让学生从实际生活出发,体会运算定律的现实生活背景,这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。
本节课也一样,教材提供了这样一个主题图:工人叔叔正在给墙面贴瓷砖呢,横着一排贴9块瓷砖,竖着有两种颜色,其中黄色的贴4排,蓝色的贴6排,需要解决的问题是:一共需要贴多少块瓷砖?学生独立计算,分别用两种不同的方法计算:
(1)4×9+6×9=90(块);
(2)(4+6)×9=90(块)。
接着我让学生叙述等号左边和右边分别表示什么意思(根据情境)。目的是让学生用等值变形对算式的理解。接着让学生观察两个算式,让学生说出:这两个算是可以用“=”连接,即:(4+6)×9=4×9+6×9。学生继续观察等于号左边和右边的算式的特点,目的是结合学生熟悉的问题情境,为后面的.学习奠定基础,帮助学生体会运算定律的现实背景。接着设计“悬念”,出示四组题目,把学生引到“两个算式的结果相等”的情况中来。先让学生猜想,然后验证,再让学生仿照上式编题,让每一个学生都不由自主的参与到研究中来。在编题的过程中,大多学生都编得正确,于是学生在参与探究中体验到了成就感,从而增强了他们学习的自信心和继续探究的欲望。接着,请同学们在生活中寻找验证的方法,分小组交流讨论,学生的思维活动一下活跃起来了,纷纷探究其中的奥秘。
用小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得的成功的机会。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐。自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。
“给的现成”的少,学生“创造”的就多,这样学生学会的不仅仅是一条规律,更重要的是,学生学会了自主、主动参与,学会了进行合作、独立思考、研究、发现等,像一个数学家一样(这是我的鼓励语言)!这对于一个十来岁的孩子来说,起到的激励作用是无比巨大的。而爱思考、多思考、会思考的学习习惯,会让孩子一生受益。纵观整个教学过程,学生学得轻松,学得主动。
通过这节课的教学,我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有深度、广度,也为培养和发展学生思维的灵活性,提供了更加广阔的空间。本节课的教学较好的贯彻了新课程标准的理念,具体体现在以下几点:
一、主动探究、亲身经历和体验
学生的学习过程应该是学习文本批判、质疑和重新发现的过程,是在具体情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展的过程。本节的教学,我从主题图入手,引出(4+6)×9=4×9+6×9。设计的目的是从解决这个问题的两种算法中,得到乘法分配律的一个实例。接下来,出示四组题目,把学生引到“两算式的结果相等”的情况中来。然后让学生通过验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、验证、归纳出乘法分配律。整个过程中,我不是把规律直接呈现给学生,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个过程中,学生经历了一次严密的科学发现过程:观察――猜想――验证――结论,联系生活,解决问题。为学生的可持续学习奠定了基础。
二、多向互动,注重合作交流
在教学过程中,学生的认知水平、思维方式、智力水平、活动能力都是不一样的。因此,为了使不同层次的学生都能在学习中得到发展,我在本节课的教学中通过师生多向互动,特别是通过学生与学生之间的相互启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一定律的主动构建过程,使学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。
总之,在本节课中,虽然新的教学理念有所体现,但对于个别学生的参与积极性还没有充分调动起来,同学们虽然很投入,都似乎掌握了运算定律的运用,但在课堂练习时还是发现了一些问题,个别学生仍然出现了概念混淆,如:学生在计算形如a×(b+c)时,就把等于号右边的算式错误的写成:a×b+c,期间我还提醒大家注意,但实际运用中,很多同学还是忘记用括号里的两个加数a和b分别去乘括号外的乘数c。其实这个问题,也是我上课之前所发怵的原因,现在看来,对于这一问题,还必须在今后的练习过程中进一步加强理解、运用的训练,更有待我在今后的教学中不断地探索改进更好的教学方法,以求进一步提升课堂教学效率。
乘法分配律教学反思13
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。因此在本节课教学设计上,我结合新课标的一些基本理念和本地区的具体情况,注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。
《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,在上课的一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。
与此同时,我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的.主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,学生也学得积极主动。
应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。只有这样才能真正提高学生的计算能力。
本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。但学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高
乘法分配律教学反思14
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。
一、本课堂我的教学程序是:先让学生独学“学一学”部分的6个问题,第1、2个问题根据情景图上所给的信息估算并列出算式:(4+2)×25和4×25+2×25;第3个问题让学生观察这两个算式的特点;第4个问题根据你的.发现完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意图是让学生体验乘法分配律);第5个问题试着举出类似的例子;第6个问题试一试:你可以用a、b、c分别表示三个数,写出你的发现吗?(a+b)×c=()×()+()×()。独学完六个问题后,学生通过群学和小组在全班的展示,进一步达成学习目标。接下来,通过练习检测学生对乘法分配律的理解和应用。最后通过两道练习题对所学内容进行了延伸。((1)28×18-8×28、(2)25×99)
二、不足之处:
1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。
2、在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。
3、课堂用语不够简洁。
三、结合学生的掌握情况我觉得教学此内容需要注意以下几点:
1、区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
3、多练。
针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
乘法分配律教学反思15
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。
一、在对本课的教学目标上,我定位在:
(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
二、在本课教学过程的.设计上
我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:
(4 + 2)×254×25 + 2×25
= 6×25 = 100 + 50
= 150(元)= 150(元)
此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:
(a + b)× c = a × c + b × c
三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。
1、在完成课本36页做一做时,对应这3道判断题,
(1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。
(2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。
(3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。
2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:
通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。
【乘法分配律教学反思】相关文章:
《乘法分配律》教学反思02-07
乘法分配律教学反思04-12
乘法分配律的教学反思优秀03-21
乘法分配律教学反思(15篇)03-13
乘法分配律教学反思15篇02-19
《乘法分配律》教学反思(15篇)03-05
《乘法分配律》教学反思15篇02-15
《乘法分配律》教学反思通用15篇03-14
《乘法分配律》教学反思(通用8篇)04-07