判定教学反思
身为一名到岗不久的人民教师,我们的任务之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,教学反思要怎么写呢?下面是小编为大家整理的判定教学反思,希望能够帮助到大家。
判定教学反思1
今天学习《平行四边形判定》,主要内容是让学生推理三个判定方法和对判定方法的运用.这节课有以下三个启示:
1. 目标指导要明确.在八班布置三个判定定理的讨论时,结果有些同学过了几分钟竟然不知道该如何处理问题.所以在七班我设法把问题更加明确化,而且指明努力的方向,结果表明效果好很多.所以要充分估计问题的难度,要让学生能明了思考的方向。
2. 在学生讨论中,要指导学生注意讨论的效率,帮助学生学习如何沟通,如何倾听.这是传统课堂所不能训练的内容.老师除了关心教学内容外,更重要的是要关心学生的一些非智力因素的培养.协调小组同伴之间的关系,帮助提高学习效率。
3. 当有同学上台展示自学成果的.时候,老师要关注学生是否认真倾听,而且允许学生在讲解过程中询问为什么.这样,既可以让讲解者能及时梳理清晰自己的思路,语言表达更加准确,而且也能让更多的人跟上节奏,让讲解者和倾听者都能在交流中受益.其实,听比讲更加需要专注力。
判定教学反思2
正方形的判定是八年级数学下册18章的内容,前边已经学习了平行四边形、矩形、菱形的判定方法,正方形的判定是平行四边形、矩形、菱形的判定的综合。可以通过本节的学习总结、归纳前面所学内容,澄清学习中存在的一些模糊概念。正方形的有关知识在日常生活中的应用也非常广泛,是近年中考命题的热点之一。利用正方形的性质和判定进行解题,有助于我们发展演绎推理能力,
培养证明过程的严谨性,发展学生初步的综合推理能力。
今天上正方形这节课整体比较满意,主要体现在以下几方面:
第一、利用图形进行比较教学,学生比较容易理解,同时很清楚各种图形之间的关系。结合矩形和菱形的条件得到正方形的定义,有一个角是直角,有一组邻边相等的平行四边形是正方形。在分析定义时,强调了正方形定义和前面两类特殊平行四边形的异同。突出要得到正方形的三个条件,
1、一个角是直角;
2、有一组邻边相等;
3、是平行四边形。并指出每一个条件它的作用。
第二、通过归纳矩形和菱形的性质得到正方形的性质,有前面学习的基础,学生掌握的比较轻松。
第三、正方形的判定,教材的处理没有用专门的判定,对于正方形的证明主要是通过定义,但是在证明的过程中又进行相应的结合,并不是纯粹的证明出三个条件。首先根据定义,由平行四边形直接得到。然后由矩形增加条件得到,还有菱形增加一个条件得到。虽然没有专门用黑体字表示,但是实际上证明都可以用,总的其实就是用到了定义进行证明。
正方形的判定方法:
(1)有一组邻边相等并且有一个角是直角的.平行四边形是正方形;
(2)有一个角是直角的菱形是正方形;
(3)有一组邻边相等的矩形是正方形;
(4)对角线相等的菱形是正方形;
(5)对角线互相垂直的矩形是正方形。
第四、详细讲解范例,主要是引导学生,对于正方形的证明的思路以及书写的格式。
在复习提问时,思路条理,能够清晰的和学生一起理顺知识点间的联系和区别,为后边学习正方形的判定打下良好的基础。在学习判定方法时,能够引导学生对判定方法进行证明,引导学生从边、角、对角线等角度去思考,避免了学生思维混乱,无从下手的局面。学习例题,能够因势利导,培养学生的自学能力,并且能及时纠正学生在做题过程中的不足之处,小组合作时先独立思考,再适当交流。学生本节课学习积极,效果良好。
在复习阶段花费时间比较多,总结图形之间的联系和区别时没有让学生独立思考,而是一块回答,在讲解例题时,只讲了一道,对教材没有进行充分的研究,在本例题的基础上再进行拓展延伸,并适当进行应用,课堂内容显得有些不充实,没有很好的培养学生的发散思维,题目准备不多,课堂练习时间不够,时间上把握不是很准,教学任务完成的不够完美。
判定教学反思3
一、取得的效果:
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的`结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“hl”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
二、存在如下的不足:
从学生作业反馈的情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“hl”。二是不少的学生利用所学的知识来解决简单的问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
三、解决方法
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
判定教学反思4
《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。
一、导学案设计如下:
1、教学目标和重难点
基于学生的学习情况,确定了本节课的教学目标和教学重难点。教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。
2、具体内容安排如下:
首先安排的是自主学习部分,以填空的形式。再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。
接着安排的是巩固提高练习。在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。
再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。
最后是测评反馈,目的.是通过本节课学习,了解学生对该部分知识的掌握情况。
二、这节课存在的问题与不足:
1、 导学案内容设计上,测评反馈较简单,起不到测评效果;
2、 几何问题解决上,对已知条件分析不到位,导致学生不知如何运用已知条件,推理思维重视不够;
3、 小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;
4、 解决问题的方法总结上不到位;
5、 驾驭课堂能力差,学生学习热情不能很好地调动;
6、 教学语言不够简练,教学心理紧张。
三、今后努力方向:
一方面,在教学上认真钻研课本和新课标,抓教学内容的本质;多做一些练习,揣摩教学重难点,抓住出题方向,总结教学方法。另一方面,要立足于学生,站在学生立场上去备课去设计教学过程。同时,注重对学生进行循序渐进地练习,不要急于求成,有意识地培养学生有条理的思考和表述,训练学生的逻辑思维能力,另外,注意分析和解决问题方法的总结。最后,在自身素质上,多听课,多向其他教师请教,不断学习,提高专业素质和教学技能。还需养成会反思、勤反思的习惯,不断思考自己在教学过程中出现的问题和不足。
总之,通过这次公开课,自己感触颇多。一方面暴露出自己有好多不足,另一方面说明自己的成长空间还很大。最后这篇反思就以这句诗结尾吧:路漫漫其修远兮,吾将上下而求索。
判定教学反思5
本节课的题目是《矩形的判定》,是在学习了矩形的性质之后的一节课,采用了“先学后教、当堂训练”的教学模式,主要是遵循教育教学规律,坚守课程标准,以新课程理念:学生为主体、老师是主导,还课堂给学生的思路,充分发挥学生的能动性;再一个利用电教信息技术,优质资源班班通,引进优教班班通上的微课资源,让孩子们就享受到了名师的服务,提高了学习效率。
首先是回顾旧知识矩形的性质,然后提出问题:、“除了使用定义可以判定矩形外,还有别的办法吗?”,然后看微课“矩形的判定名师讲解”,最后根据学生掌握的情况,讲析两道例题(让学生分析思路,找到解决办法,板书后再和规范书写对照),教师参与点评更正,最后当堂练习,再次发现问题,解决问题,最后小结。
由于采用的教学模式是先学后教当堂训练,这样的讲具有很强的针对性,做到了有的放矢;由于始终让学生做主体,抓住了学生的注意力,独立思考、小组交流、分享成果,使得学习氛围积极、不拖沓,逐步形成了主动探究的习惯,同时也激发了学生的学习兴趣;判定的选择使用,让孩子们多了份理性思考,提升了学生的.数学素养。
不足的地方有二:
1、学生的综合应用能力和分析问题的能力都还有待于进一步训练。比如可以让多个学生来谈自己的思路,包括成熟的,也包括不成功的;还可以让小组多交流,小组内展示,等多种方式去挖掘学生的潜力。
2、技术应用不够熟练和使用的手段少,这个问题完全可以再使用几何画板、触控一体机上的鸿合软件等呈现给学生,让他们去发现的图形所蕴藏的数学规律。这样会更直观,印象更深。
判定教学反思6
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解,数学课文-直角三角形全等判定教学反思与自评。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程,教学反思《数学课文-直角三角形全等判定教学反思与自评》。
数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的`拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。
总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。
判定教学反思7
平行线的判定是七年级下册平行四边形这一章中很重要的一节课,在本节课中,重在经历探索判定平行线的过程,在操作活动和观察分析过程中发展学生的主动归纳意识,进一步体会和理解说理的基本步骤。了解平行线判定的常用方法和应用。
本节课的思路是:先创设问题情境,引入新课,然后展示学习目标,通过小组活动引导学生得出平行线的判定定理一,在定理一的基础上衍生出定理二三。在这一过程中注重培养学生的思维,利用题型变换等方式提高学生的`逻辑思维能力。在培养灵活思维的同时注意解题“通法”这一不变因素,引导学生解决问题。然后通过联系生活强化学生用平行线的判定定理解决实际问题,使学生体验到数学来源于生活又运用到生活中去。
本节课结束后,我认真的批改了本节课的作业,根据实际情况,觉得学生掌握情况不是很好,出现了一些不足。为了今后能更好的开展教学工作,完成教学任务,总结以下几点,以提高今后的教育教学水平:
亮点一:通过动手操作,使学生更直观的感受平行线的判定定理,体验到探索与获得成功的喜悦。
亮点二:通过小组合作,增强了合作意识。
亮点三:通过类比和变式教学,锻炼学生的归纳总结和迁移的能力。
亮点四:大部分学生积极性被调动起来,学习中下等的学生积极参与课堂学实习中去。
不足与措施:
1、对学生的情况个人估计过高。本节课设计的内容较多,知识点练习复杂,导致在本节课的时间感觉比较紧,需要在自习课进一步学习。
2、在教学中平行线的判定学生虽然已应掌握但在运用时不灵活,还需要在课下继续练习。
3、学生学习的积极性较充分地调动起来。还有少部分学生学习比较被动,平行线的判定记忆不够熟练运用不灵活。应该让学生更主动、积极地学好数学知识,使每一个学生在数学课堂都能获得提升的机会,每天进步一点点,逐步完善自我,攀登数学知识的高峰。
判定教学反思8
1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。
2、把本课时一分为二,重点在于对例2的`讲解上,添加辅助线的导入也十分顺畅,学生掌握较好。
3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。
判定教学反思9
1﹑在空间中,平面与平面之间的位置关系有两种,一种是平行,一种是相交,而垂直是相交中一种非常重要的位置关系,它的应用很多,充分的把线线垂直﹑线面垂直﹑面面垂直之间的互相转换表现的淋漓尽致。
2 ﹑平面与平面垂直的定义是通过二面角给出的,二面角这个难点的内容已经在上一节课中完成,给这节课留下了比较充裕的时间来探讨平面与平面垂直的判定定理。
3﹑本节课在上一节课二面角的基础上,让学生观察地理、建筑学以及生活中具体的实例,使学生很快的观察出两个平面是直二面角的特点。让学生类比平面与平面平行的证明方法即线线平行得到线面平行再到面面平行,将平面与平面的垂直转化成直线与平面的.垂直的问题,从而得到了平面与平面的垂直的判定定理。提高了学生的想象力,类比能力,让学生学会多角度分析和思考问题,感受从旧知识转化到新知识得快乐,培养学生的创新精神。
4﹑注重学生的逻辑推理的严密性,给时间学生书写过程,规范书写。
判定教学反思10
《数学课程标准》要求:让学生成为行为主体“动手实践、自主探索、合作交流 ”。以上述思想为出发点,本节课的教学设计体现了活动性、开放性、探究性、合作性、体验性。
教学流程:创设情境,激发求知欲——合作交流,探索新知——应用拓展,达成目标——归纳总结,深化目标
1.关于探索
两个三角形相似条件的探索,本设计没有按照教科书那样直接指导学生按部就班地画一个角,两个角这样的程序进行。而是首先在新旧知识的转折处,创设有助于学生自主学习的问题情境——能否配制一张完全一样的玻璃来引导学生探索并深入研究。使学生经历“直观感觉――动手感知――理性思维”的活动过程,在教师指导下生动活泼地、主动地、富有个性地学习,真正感受数学创造与探索的乐趣。
2.关于应用
三角形相似的判定方法的应用是本节的一个重点,在运用时,如何找准相等的两组对应角是一个难点。本设计注重了习题的发展性作用,层层深入,逐一突
破难点。同时根据变式分层的思想,设计具有一定跨度的问题串,组织学生进行变式训练,使每个学生都得到充分的发展。
3.课堂组织
本课采用“自主探索,合作交流”这一教学组织形式,鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的'过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。
4.关于评价方式:
本章定位于以直观几何为主体、附以一定程度上的说理和简单推理。本节课关注的是学生能否主动参与小组合作,积极探索。为此,教师要特别关注学生个性化的学习需求以及对个性化学习的恰当评价在课堂教学中,给学生留有充足的时间,发表自己的观点,教师应及时表扬和鼓励,这有助于学生认识自我,建立自信,发挥评价的教育功能。
5.遗憾之处:
①题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
②有些题虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,仅是为做题而做题。
6.反思之处:
反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;反思三,教师的经验是宝贵的,一定要开诚不公的交流;反思四,工作的责任心是必要的,一定要无私奉献;反思五,教师的工作是高尚的,来不的半点虚假。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
判定教学反思11
本节课我对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。注重学生自己分析,启发学生用不同方法解决问题,探索直线平行的条件。
反思这节课,我感觉讲解基本到位,练习难度适中,并基本达到练习的目的。在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课,教师作为学习的组织者,引导者,合作者,做好牵针引线的工作,除了作必要的引导和示范外,问题的'发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;
3、在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
4、有意识地对学生渗透“转化”思想;引导学生将数学学习与生活实际联系起来。
当然,还存在很多不足,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果能处理好这几方面的问题,效果会更好。
判定教学反思12
一、知识回顾。(小黑板出示)
1.我们已学过了哪些判定三角形相似的方法?
2.在△ABC与△DEF中因为∠A=∠D=45°,∠B=26,°∠E=109°.则这两个三角形是否相似?
二、动脑筋
鼓励学生动手画图,认真思考书中问题,引导同学们讨论得出判定定理3:两边对应成比例且夹角相等的两个三角形相似。
指名说一说:这个定理的条件和结论各是什么?关键处是什么?
同桌完成课本上的做一做。然后指名在班上说。教师及时给予表扬和肯定。
三、出示例题2.要求学生尝试完成。不会做的'自己看书,然后再做。教师行巡
回辅导,适时指点练习中容易出现的问题。最后指名板演,集体订正。
四、出示课本78页中的B组2题作为典例分析。
要求学生凭眼睛看这两个三角形相似吗?再通过计算他们的对应边是否成比例。有一个角对应相等吗?他们相似吗?同桌讨论各自的心得。从这个例子你能得出什么结论?指名说。
教师示范:规范写出两个三角形对应边成比例,且夹角相等的两个三角形相似已知,求证及证明过程
五、出示B组1题作为典例分析。要求学生先自学,再试着做一做。最后师
规范板书全过程。
六、启迪学生除这种解法外,你还能用别的方法来证明吗?鼓励学生用多种方
法解题。
七、引导学生归纳解题所得。
八、 总结整堂课内容。
九、巩固练习。完成教材第78--79页练习1、2题
十、作业:基本训练78--79页A组1-2题。教师巡回辅导
我的反思:
成功之处:.
1、课前对旧知识的回顾,以防止负迁移现象,特别是做一做的设计注重了相似三角形中对应元素的训练,为潜能生设置了一个障碍,以培养学生的合理想象力。
2、整堂课体现了以学生为主体的教学理念。教师的点拨很到位,对定理的剖析突彻,在教学过程中注重了规范板书,为学生起到了示范作用。
3、巡回辅导对提高潜能生有很大帮助,同时充分利用有利资源,以优帮劣,及让优生巩固了所学知识又提高了潜能生,何乐而不为?
4、作业的设计具有层次性。做到了突出重点,突破难点。
不足之处:
1、巡回辅导时未顾及到全局,关键是时间太紧。
2、时间分配不够合理,运用定理解题时间花的太多,导致作业不能当堂完成。
3、教师语言不够精炼,重复话较多。有待于在今后的工作中不断提高,不断改进。
判定教学反思13
通过本课的教学,我深刻体会到课堂教学活动中教师与学生的和谐配合对提高课堂教学效率有着非常大的作用。在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师在巡视过程中做适当的评价和提示,以弥补学生学习能力的不足之处,从而达到化解“难点”的目的。
在课堂教学过程中,真诚交流意味着教师对学生的殷切的期望和由衷的赞美。期望每一个学生都能学好,由衷地赞美学生的成功,让学生在整堂课中能在不断出现的问题及不断被自己“聪明”的解决问题的成功喜悦中进行学习,享受学习的乐趣。
学生充分讨论,并以积极的心态互相评价、相互反馈、互相激励,只有这样才能有利于发挥集体智慧,开展合作学习,从而获得好的教学效果。数学教学过程中,对于学生的`提问,教师不必作直接的详尽的解答,只对学生作适当的启发提示,让学生自己去动手动脑,找出答案,以便逐步培养学生自主学习的能力,养成他们良好的自学习惯。课上教师应该做到三个“不”:学生能自己说出来的,教师不说;学生能自己学会的,教师不讲;学生能自己做到的,教师不教。尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高。
判定教学反思14
本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特点,这是落实核心价值观直观想象的过程,学生建立逻辑关系——平行四边形形状与边角大小之间的关系(直观想象是显性的,逻辑推理是隐形的)。在环节二探索活动一,利用橡皮筋套木框改变橡皮筋的.松紧长短程度从而改变平行四边形的形状,观察平行四边形演变为矩形的过程,这是通过直观形象产生疑惑,有想法,进而升华为逻辑推理——改变平行四边形的对角线长短关系引起角的变化,这个变化过程中当一个角是直角时将平行四边形演变为矩形,这是落实显性的直观形象与隐性的逻辑推理的过程。
在环节三探索活动二,利用小芳画矩形的过程引入矩形的第二种判别方法,同样小芳画的过程是学生进行直观形象的过程,小芳画出来的学生观察确实是一个矩形,进而反问学生为什么是?这就是逻辑推理过程了,也是数学抽象的过程了,通过数学逻辑证明,得出确实是,从而抽象出——三个角都是直角的四边形是矩形。这个环节落实的数学学科核心素养显性的是直观想象,隐性的是逻辑推理,深入挖掘出数学抽象也是在这节课落实的素养。在环节四议一议中,只利用一根绳子,是否能判断出平行四边形、矩形、菱形?这是一个开放性的问题,也就是脱离角是否可以判断四边形的形状?直观形象这是首先落实到的核心素养,进而学生考虑四边形只考虑边的特点,不考虑角,是否可以判断,逻辑推理过程在这个过程中落实的淋漓尽致,其实质数学抽象——将绳子与边结合起来,这也是这个环节不可小视的核心素养。
经过本节课的讲解,深感落实数学学科核心素养在数学课堂中的重要作用,直观想象是本节课最显性的核心素养,而逻辑推理是在直观想象后升华的部分,数学抽象很多人或许会忽视,但会发现,在数学学科中,数学抽象虽然看不到也讲解不到,但在知识的升华过程中数学抽象才会产生质的飞跃,脱离现实数据抽象出数学真知。
判定教学反思15
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的`知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题
【判定教学反思】相关文章:
矩形的判定教学反思02-26
《矩形的判定》教学反思范文01-11
平行线的判定教学反思03-20
全等三角形的判定教学反思03-03
相似三角形的判定教学反思03-15
三角形全等的判定教学反思03-17
教学教学反思03-22
经典教学反思04-21
精选教学反思04-21