当前位置:育文网>教学文档>教学反思> 《乘法分配律》教学反思

《乘法分配律》教学反思

时间:2022-04-07 09:52:35 教学反思 我要投稿

《乘法分配律》教学反思(通用8篇)

  乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。下面由小编给大家整理《乘法分配律》教学反思,欢迎大家阅读参考。

《乘法分配律》教学反思(通用8篇)

  《乘法分配律》教学反思 篇1

  乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

  一、抓住重点。让学生理解乘法分配律的意义。

  教材按照得出两道算式,把两道算式写成等式,分析两道算式之间的联系,写出类似的几组算式。发现规律,用语言或其他方式交流规律,给出用字母式子表示的运算律。这样的安排,便于学生经历观察、分析、比较和根据的过程。能使学生在合作交流的过程中,对简洁分配律的认识由感性逐步上升到理性。教学用书上写道:教学的重点和关键应是引导学生自主发现规律,用语言或其他方式与同伴交流规律。

  在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的.时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

  我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

  总之,这个关键今天并没有完成好。

  二、考虑学生的学习情况,尊重他们的主观感受。

  在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板书在黑板上,只是在规范的那一道上面画了个星,告诉学生,乘法分配律的表示一般性采用的是这一条。

  三、练习中注意乘法分配律的变式。

  乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1)和74×20+74。一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

  今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45x5+65x5和(45+65)x5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45x5+65x5=(45+65)x5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。想想做做第1题只有几个学生把第3小题填错,其实包括后面的练习中,把AxC+BxC改写成(A+B)xC的正确率要比把(A+B)xC改写成AxC+BxC的正确率高,可能还是学生受以前:45个5加65个5也就是(45+65)个5的理解方法的限制而没学会用自己的语言表述乘法分配律,从而也没能真正掌握乘法分配律含义的缘故吧。

  想想做做第2题的第3小题74x(21+1)和74x21+74部分学生没有发现它们是相等的,我让认为相等的学生表述理由,学生能把算式改写成74x21+74x1再运用乘法分配律变形成74x(21+1),学生理解后我补充77x99+77=□(□○□)让学生填空,完成情况好多了,在拓展练习时补充了AxB+B=□(□○□)和AxB+B=□(□○□)让学生进一步真正理解乘法分配律的意义。但学生在完成想想做做第5题时,学生多习惯列式48x3+48x2来计算,却不能灵活运用所学知识列成(3+2)x48来计算,虽然运用乘法分配律进行简便计算是下一课的学习内容,但我也由此反思出我教学的不足之处,在例题教学时只关注了得出等式,却忽略了让学生比较等式两边的算式哪边比较简便。于是在第4题的算算比比中才补上了这一点。

  《乘法分配律》教学反思 篇2

  本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

  在充分感知的基础上引导学生比较这几组等式,发现有什么规律?

  这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的`方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。

  如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。

  《乘法分配律》教学反思 篇3

  《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。在教学时,我也是按照教学参考书的建议安排教学过程的。先复习乘法的交换律和结合律,接着导入新课。通过让学生观察、分析、思考、归纳,最后在教师的`引导下总结出乘法分配律并加以运用。

  教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。结果,学生对乘法分配律不太理解,运用时问题较多。如当天在作业时出现的问题就比较多:45×103有三分之一的学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。

  今后的工作中,要多向以下几个方面努力:

  1.多听课,多学习。尤其是青年教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2.加强同同课教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

  《乘法分配律》教学反思 篇4

  《乘法分配律》是一节比较抽象的概念课,是学生们学习了加法交换律和结合律,以及乘法的交换律和结合律的基础上进行教学的。本节课的教学重点是乘法分配律的特点和应用。开始导入我是利用小学教学热身赛展开的教学。9×37+9×63和9×(37+63)。左右两排学生做不同的题,让学生认识到这两道题难易程度的不同,用的时间也是不同的,体现了用括号的必要性和简便性,通过学生总结说特点引导他们猜想,然后对猜想进行验证,得出结论,并应用到实际中,培养学生们学以致用的'好习惯。

  上周去滨州听课,学到了“猜测-举例验证-总结-应用”的教学模式,充分体现了新课标的探究性学习,并在本课教学中得到了很好的利用,不完全归纳法,也在本课中用所应用。但是在引入时应该让学生们把这两个算式的特点和联系理解透彻了,学生们会很快的猜想出这条规律,整节课讲速度有些慢,导致了几个经典的练习题没有处理,创设情境激发学生的求知欲来导入新课,会收到更好的效果。

  (80+4)×25=80×25+4×25此题的处理,我感到比较欣慰。当发现学生们(80+4)×25=80×25+4时,我灵机一动在黑板上写下了这个错误的算式,让和我做的一样的同学举手,大约有5、6个同学高兴地举起手,还有一个同学得意地说“刚才我还以为做错了呢?”看到这种情景我接着说:“不举手的同学你们想说点什么吗?”此句话给了这些没有举手的同学的信心,他们迫不及待地说出了正确的解法。这道题学生们非常容易做错,这样的处理会使学生加深印象,提高做题的准确率。

  《乘法分配律》教学反思 篇5

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  一、在对本节课的教学目标上,我定位在:

  (1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  (2)初步感受乘法分配律能使一些计算简便。

  (3)培养学生分析、推理、概括的思维能力。

  二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:

  1、总体上我的教学思路是由具体——抽象——具体。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。

  教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、鼓励学生大胆猜想。

  猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的'无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。

  4、师生平等交流。

  教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

  5、将学生放在主体位置。

  把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

  三、教学中的不足和改进之处:

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:

  1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

  《乘法分配律》教学反思 篇6

  乘法分配律是人教版数学第三单元的内容,它是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。

  同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。但要做到让学生进行“探究、推理、自己总结规律”很难,因为上的'是直播棵,为了突破难点,在备课时,我做足了功课,首先我从例题入手,把乘法分配律放在具体的情境中,结合学生已有的生活经验,学生发现解决问题策略很多,此题可以用两种方法解答:(1)(4+2)×25;(2)4×25+2×25,通过比较,学生知道了为什么:(4+2)×25=4×25+2×25,经历了知识探究的过程,讲完例题后,又让学生通过发语音、课堂连麦的形式让举了许多这样的例子,提高了学生学习的积极性,每个例子不仅可放在具体情境中,也可借助乘法的意义让学生进一步理解,从而得出什么是“乘法的分配律及它的应用”,课堂取得了很好的效果。

  《乘法分配律》教学反思 篇7

  关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

  首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

  其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的`等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

  不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

  《乘法分配律》教学反思 篇8

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

  在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

  在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的`形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

  通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

  所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

【《乘法分配律》教学反思】相关文章:

《乘法分配律》教学反思02-07

乘法分配律教学反思02-12

乘法分配律的教学反思优秀03-21

《乘法分配律》教学反思15篇02-15

乘法分配律教学反思(15篇)03-13

乘法分配律教学反思15篇02-19

《乘法分配律》教学反思(15篇)03-05

乘法分配律教学反思范文(精选5篇)01-30

《乘法分配律》教学反思通用15篇03-14

乘法分配律教学反思(集合15篇)03-23