当前位置:育文网>教学文档>教学反思> 数列教学反思

数列教学反思

时间:2024-10-15 08:32:34 教学反思 我要投稿

数列教学反思

  身为一名人民教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?以下是小编收集整理的数列教学反思,仅供参考,欢迎大家阅读。

数列教学反思

数列教学反思1

  数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

  利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

  给定一个数列的`有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

  为了提高学生的反应能力,我从最简单的数列——正整数数列——开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

  (1)数列1,2,3,4,5,……是一个正整数数列,每一项与项数相等,其通项公式为。

  (2)数列2,4,6,8,10,……是一个由正偶数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式。

  (3)数列1,3,5,7,9,……是一个由正奇数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式。

  (4)数列1,4,9,16,25,……是一个由正整数的平方数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式

  (5)数列1,,,,,……是一个由正整数的开方组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式。

  然后参照以上5个数列,由同学们归纳出下列数列的通项公式:

  (1)数列3,5,7,9,11,……的通项公式为。

  (2)数列0,3,8,15,24,……的通项公式为。

  (3)数列,,,,……的通项公式为。

  (4)数列,,,,……的通项公式为。

  通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

  学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。

数列教学反思2

  针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法:

  1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和);

  2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和。

  从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。

  1、 注重“三基”的训练与落实

  数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。

  2、 例、习题的选配典型,有层次

  一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。

  3、 对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计

  对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清求和的项数上,因而在求和的项数上做了文章,有意设计了求和而非求,并且通过这两道题特别强调了算清项数、如何算清项数等问题,抓住了学生解决这类问题的软肋。

  4、 教学过程中充分关注到了学生的反应和状态

  在解题教学中比较注意启发引导学生,通过自然习得,从而顺理成章达到水到渠成。从题目的设计到解题思路的分析都考虑到了学生的接受能力,从具体到抽象,通常是把问题摆出来、提一句、点一下,尽量不包办代替,努力引发学生的`体验和思考,比较注重知识形成过程的教学。同时注意通过多种途径,多种角度,一题多解解决问题,杜绝直接把结果强加给学生,使学生不知所云。

  当然这节课的教学也存在着这样那样的不足,比较典型的有以下两点。

  1、对于基本公式的掌握仍需加强落实

  部分同学公式的记忆仍成问题,本以为课上可以一带而过,不成想主动举手、信心满满、自以为可以完美表现的同学站起来仍然把等比数列的公式说错了,可想而知其他同学的情况了,恐怕也不容乐观,可见连基本公式的强化记忆都是需要老师不厌其烦加以督促的。

  2、由于课堂时间容量的限制,学生们的思维活动展现得还不够充分,问题也没有完全暴露出来。

数列教学反思3

  高三复习课以其庞大的容量让奋战在一线的老师们吃尽苦头,每位老师都有课时拮据的感叹!而资料中涉及的知识和原有内容冲突时,学生无所适从,参与探究获得知识的机会偏少,老师传授总显得相当匆忙,课堂更多成了教师的表演与独白,每当我反省学生究竟学会了那些东西时,总会汗颜;课程是按时完成了,但其有效性有多少?该让学生更主动积极地参与课堂教学,在探究中体验知识的`联系,那怕一节课只学会一两种题型的解决策略,也比满堂灌,最终什么都没学到强多了。而资料中涉及的知识和原有内容冲突时,学生更是无所适从,如何把资料和课本更好结合,则是我们每一位教师必须重视的。

  在《数列求和》的内容中我最初设计了两课时,讲分组求和法、倒序相加法、裂项相消法,并引申出求通项公式的迭加(乘)法,乘比错位相减法,并补充求通项公式的待定系数法。当我重新审视教学设计和资料时, 发现资料中的裂项法和拆项法与我前面所讲的有冲突,如何能减小冲突,且多留时间给学生思考 ,取得更好的效果,于是决定改变资料教学内容,裂项法是重要的求和方法,不仅渗透了化归的重要思想,而且也是高考的热点问题,从最简单的题目入手,循序渐进,或者会有不可估计的收获吧…

数列教学反思4

  一.教材分析及能力要求:

  数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

  二.教学中的重点、难点教学

  数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

  三.教学过程反思

  在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的`解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

数列教学反思5

  本节课是高三总复习冲刺阶段的复习课,为了更好地将知识点连贯起来,对数列及其求和问题有一个更深的认识,首先展示了20xx年的高考大纲中对数列问题的基本要求,也就是本节课的教学目标,要让学生知道数列问题在高考中考什么,怎么考。它规范了教师的教学行为和学生的学习行为,克服教学中的随意性,教学目标的出示有助于引导学生明确本课时的学习任务和要求。

  同时将历年高考中出现的典型问题作为例题进行展示,为的是让学生充分把握好数列问题的难易度,做到心里有底。学生在自主探索和合作交流中理解并掌握本节课的内容。在整个探究学习的过程中充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。例1中运用的分组求和法和例2中的裂项法,从学生课堂反馈来看掌握较好,这也是本节课的重点。例3所涉及到的错位相减法显然难度有点太,学生完成起来有点困难。

  梳理归纳环节上,总结反思了每道例题的出题意图,意在培养学生归纳、总结的习惯,让学生自主构建知识体系,清楚高考中每一道题都有它自己的考察方向。激励学生以更大的热情投入到最后的冲刺复习中去。

  目标检测部分,意在将本节课的重点做一个重温,两道练习与例1和例2是相对应的。目的就是要让学生一定要掌握本节课的重点。

  本节课的优点:

  1、整体的思路比较清晰:展示目标,组内讨论,小组展示并释疑解惑,然后通过练习进行辨析,学生自己归纳求和方法,再接下去是方法的应用和巩固,即目标检测,知识梳理、布置作业。整个流程比较流畅、自然。

  2、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;能准确的指出学生在处理问题中的不足并帮助及时改正。

  本节课的遗憾:

  1、在做时例3这张幻灯片没有设计好,导致字有重叠看不清。

  2、还应更注重细节,讲究规范,强调反思;

  总体来讲,在教授中始终把以学生为本的教学理念贯穿本课。采用将上课的'主动权交给学生,而学生的学习积极性有很大的提高,学习效果好。通过对本节课系统的回顾,梳理,发现部分学生在知识点的运用上还存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

数列教学反思6

  高二复习课以其庞大的容量让奋战在一线的老师们吃尽苦头,每位老师都有课时拮据的感叹!而资料中涉及的知识和原有内容冲突时,学生无所适从,参与探究获得知识的机会偏少,老师传授总显得相当匆忙,课堂更多成了教师的表演与独白,每当我反省学生究竟学会了那些东西时,总会汗颜;课程是按时完成了,但其有效性有多少?

  该让学生更主动积极地参与课堂教学,在探究中体验知识的.联系,那怕一节课只学会一两种题型的解决策略,也比满堂灌,最终什么都没学到强多了。而资料中涉及的知识和原有内容冲突时,学生更是无所适从,如何把资料和课本更好结合,则是我们每一位教师必须重视的。

  在《数列求和》的内容中我最初设计了两课时,讲分组求和法、倒序相加法、裂项相消法,并引申出求通项公式的迭加(乘)法,乘比错位相减法,并补充求通项公式的待定系数法。

  当我重新审视教学设计和资料时,发现资料中的裂项法和拆项法与我前面所讲的有冲突,如何能减小冲突,且多留时间给学生思考,取得更好的效果,于是决定改变资料教学内容,裂项法是重要的求和方法,不仅渗透了化归的重要思想,而且也是高考的热点问题,从最简单的题目入手,循序渐进,或者会有不可估计的收获吧。

数列教学反思7

  一、本章的知识结构与学生的认知结构得到了较好的统一

  本章的知识结构是:数列的基本概念——特殊数列——数列的应用。首先在理解了数列的基本概念后,进一步认识两个特殊数列:等差、等比数列,通过对两个特殊数列的研究使学生对数列的认识得到深化,进而解决一些实际应用问题。同时,教材注重了通过实例分析引入新知识,这符合从感性认识到理性认识的认知规律,因此说,教材的这种设计符合学生的认知结构。

  二、教材设计突出了数学思想方法,符合这套教材的特色

  这一章在内容设计上突出了化归与转化思想、数学建模思想等,例如:一些实际应用问题(分期付款问题)需要建立数列模型,转化为等差、等比数列求和问题。教材在编写上注意了数学方法的层层递进,例如:在数列的概念这一节涉及到了观察法,归纳法;在求等差、等比数列通项公式时用到了“作差求和”“作商求积”的方法。这些方法在后面的知识学习中都有所体现。

  三、整章内容的设计精简实用,顺理成章

  本章例、习题的配置数量多,但没有重复性例题,习题知识点覆盖全,尤其是设置了十个研究性问题,穿插在整章内容中,而且没有给出解答,提高了学生兴趣,这一点于其它章不同,前面几章中有些研究性问题,在提出问题的同时,也给出了解答,这就失去了它的设计意义,

  本章第2节设置了“数列求和”,目的是让学生理解求和概念及求和符号,提前安排这一节,分散了难点,使得后面学习等差、等比数列前n项和及特殊数列求和线的难度适中,教学时感到很自然。在习题中实际应用问题不是很多,最后一节“数列应用举例”主要是研究数列求和及求通项公式,应增加几个实际应用问题,让学生对数列知识加以深化。

  四、这一章为教师的“教”与学生的“学”提供了广阔的天地

  本章的例、习题及十个研究性问题为教师的教学提供了很多素材,同时为培养学生的探究意识和探究能力提供了广阔的思维空间。这些研究性问题的设计体现了新大纲的要求:注重培养学生数学的'提出问题、分析问题、解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力。另外,在教学实践中,这些研究性问题的设计可以激发学生的学习兴趣和求知欲,为培养学生的思维能力搭建了一个平台,给学生充分展现自我的机会,促进了学生学习方式的转变,同时,对教师的教学方式提出了挑战,如果教师还沿用传统的教学方式,就会造成资源浪费,这套教材就失去了它的价值,就会使教师陷入讲教材的困难境地。

  五、教学时要走出片面追求“严谨”、“系统”,忽视循环深化的误区

  受传统观念的影响,课程和教学中一度曾过分强调知识的严谨和系统性,强调学习的一步到位,例如上面的案例中提到的两个例题,实际上是个难点,可能有的教师觉得不够系统,会增加一些利用递推关系,求通项公式的习题,甚至会将竞赛的一些内容加进来才觉得够难度,如果这样随意求“深”求“透”,不能理解教材和大纲的用意,势必会加重学生的学习负担,就可能产生消极影响,所以要真正发挥例题的功能,达到培养学生探究能力的目的。

数列教学反思8

  本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。

  这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的'事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。

数列教学反思9

  1、爱因斯坦说过:“兴趣是最好的老师。”新课程的教材比以前有了更多的背景足以说明。本节也以国际象棋的故事为引例来激发学生的学习兴趣,然而却在求和公式的证明中以“我们发现,如果用公比乘…”一笔带过,这个“发现”却不是普通学生能做到的,他们只能惊叹于解法的神奇,而求知欲却会因其“技巧性太大”而逐步消退。因此如何在有趣的数学文化背景下进一步拓展学生的视野,使数学知识的发生及形成更为自然,更能贴近学生的认知特征,是每一位教师研讨新教材的重要切入点。

  2、“课程内容的呈现,应注意反映数学发展的规律,以及人们的.认识规律,体现从具体到抽象、特殊到一般的原则。”“教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。”这些都是《数学课程标准》对教材编写的建议,更是对课堂教学实践的要求。然而,在新课程的教学中,“穿新鞋走老路”仍是常见的现状,“重结果的应用,轻过程的探究”或者是应试教育遗留的祸根,却更与教材的编写,教师对《课程标准》、教材研究的深浅有关,更与课堂教学实践密切相关。我们也曾留足时间让学生思考,却没有人能“发现”用“公比乘以①的两边”,设计“从特殊到一般”即由2,3,4,…到q,再到 ,也是对教学的不断实践与探索的成果。因此,新课程教材留给教师更多发展的空间,每位教师有责任也应当深刻理会《标准》的理念,认真钻研教材,促进《标准》及教材更加符合学生的实际。

  3、先看文[1]由学生自主探究而获得的两种方法:

  且不说初中教材已经把等比定理删去,学生能获得以上两种方法并不比发现乘以来得容易,无奈之下,有的教师便用“欣赏”来走马观花地让学生感受一下,这当然更不可取。

  回到乘比错位相减法,其实要获得方法1并不难:可以用q乘以 ,那么是否可以在 的右边提出一个q呢?请看:

  与 比较,右边括号中比少了一项: ,则有

  以上方法仅须教师稍作暗示,学生都可完成。

  对于方法2,若去掉分母有 ,与方法1是一致的。

  4、在导出公式及证明中值得花这么多时间吗?或者直接给出公式,介绍证明,可留有更多的时间供学生练习,以上过程,教师讲的是不是偏多了?

  如果仅仅是为了让学生学会如何应试,诚然以上的过程将不为人所喜欢,因为按此过程,一节课也就差不多把公式给证明完,又哪来例题与练习的时间呢?

  但是我们要追问:课堂应教给学生什么呢?课堂教学应从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,挖掘出基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。因此,本课例在公式的推导及证明中舍得花大量时间,便是为了培养学生学会探究与学习,其价值远远超过了公式的应用。

数列教学反思10

  今天讲授《等比数列前n项和公式》。引导学生探究等比数列前n项和公式是重要内容。在探究公式的计算方法时,让学生通过观察、分析、类比、联想解决问题。有意识地使学生在推导过程中,忽略公比q=1和q≠1的情形,从而突破了公比的q=1和q≠1难点,学生在推导公式中通过自己探究解决了“错位相减”的重要数学思想。高中新课程正强调对数学本质的认识,强调返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。

  本节课后还有以下体会:

  (1)以学生为主体

  爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此数学学习的核心是思考,离开思考就没有真正的数学。这节课,通过创设了一系列的问题情景,边展示,边提问,让学生边观察,边思考,边讨论。鼓励学生积极参与教学活动,包括思维参与和行为参与,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程。在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,让学生做课堂的主人,充分发表自己的意见。激励的语言、轻松愉悦的氛围、民主的教学方式,使学生品尝到类比成功的欢愉。

  (2)巧设情景,倡导自主探索、合作交流的学习方式

  学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自主探索、合作交流等学习方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下,不断经历感知、观察发现、归纳类比、抽象概括、演绎证明、反思与建构等思维过程,体验等比数列前n项和公式的“在创造”过程,让学生在生生互动、师生互动中掌握知识,提高解决问题的`能力。

  苏霍姆林说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”本节课正是抓住学生的这一心理需求,从新课引入到课后作业,创设了一系列“数学探究”活动,为学生开展积极主动的、多样的学习方式,创设有利条件,激发了学生学习数学的兴趣,并鼓励学生在学习过程中,养成独立思考,积极探索的习惯。

数列教学反思11

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

  教学建议

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。

  (2)重点、难点分析

  教学重点是等比数列的.定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

  

数列教学反思12

  这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

  (一)对课前备课的反思

  首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。

  其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。

  第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

  (二)对课中教学的反思

  这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的`课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

  (1)学生的创新解答

  在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成

  199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了

  100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

  (2)课堂中的偶发事件

  在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

  (三)课后反思,再设计

  一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

数列教学反思13

  今年已是第二次教这章,总得来说数列也是在函数的基础进一步加深对函数的理解,因为数列是特殊的函数,因此在教学中要把握这点。在数列这章中,要记忆的内容很多,不过也是有规律可循的。

  由于在整章中主要教授四个内容:等差、等比数列及其性质、数列的通向公式的求法、数列的前n项和的求法。但是,这里面等比等差数列又是平行概念,因此总的`来说,只有三大板块。在教学中,我按分版块的思路将本章内容进行教学。值得一提的是,由于在等差数列中的性质很多,又很杂,但是使用率又相当的高,为此我采用的是由题引出结论,让学生先有切身体验,再进行讲解,这样使其感受到用性质解题远远比用定义简单得多,从而促使其自觉地使用性质,而且所有的性质我都是从所给的例题中让学生自觉总结归纳出来的,这样比我直接给出性质再让他们用效果好的多。在学好等差数列的性质的基础上,让学生对照等差学等比数列的内容,一是让其注意二者的共同点,二是让其注意到二者的本质区别。从而减轻学习负担。

  这样的效果是可见的,学生在对照的基础上加深对知识的理解,通过相应的练习使其掌握知识并自己的运用知识。

  学生给我说,他们总觉得这章的内容很多很杂,好像一个题可以用到很多的性质,但是正确的选择一个或者几个性质会使得问题变得简单,但是往往又不知道到底该用哪个性质来解相应的题。对于这个问题我也在思考,对于这样的内容该如何很好的教学,即达到效果又减轻学生的学习负担,因此找出对照学习的方法。对于性质的运用,则采用一对一的例讲及练习,达到例题示范及对应练习。最后再用综合试卷检查学生的学习效果及自己的教学方法是否达到目的。

数列教学反思14

  《数学新课程标准》指出:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。在教学本节课时,我力求通过创设一个又一个的活动情境引领着孩子们去体验、去感悟、去经历数学化的过程,使孩子们的思维火花不断地在课堂中迸发出来。

  教学中我首先考虑的是如何充分调动学生的主动性与积极性,通过引导他们开展观察、操作、比较、概括、猜想、推理、交流等多种形式的活动,学生初步学会从数学的角度去观察事物和思考问题,从而产生学习数学的愿望和兴趣。

  其次,为学生创设一连串能真正激起学生进行自我探究与发现问题的`情境,如结合百数表、数射线探究:有什么好办法很快找到一个数的相邻数?你是怎样找与一个数相邻的整十数的?使他们积极主动地去思考。同时,注重开发书上的例题与习题的功能,结合学生已有的生活经验,让他们在创造的活动中学数学,培养学生各方面的思维能力,让不同的学生在学习上有了不同的发展。

  我觉得数学认知结构的完善和再发展也是学生数学学习的一个重要组成部分。本节课的教学过程,打破了传统教学中新旧知识的界限,注重了一个整体:新知的探究与旧知的回顾及整理一起,让学生从整体上把握知识的脉络,如教学的重点(通过+1、—1得到一个数的邻数)结合百数表的知识得以把握;教学的难点(如何使一个数回到整十数和进到整十数)通过对数射线知识的巩固得以突破,促进了学生认知的再发展,建构了数学的知识结构,更为后继两位数加减一位数的学习奠定基础。

  整堂课我有意识地创设一种民主、宽松、和谐的课堂气氛,创设好一个有利于学生探索、发现、创新的教育氛围,把传统的教师“讲数学”变成了学生“做数学”的活动,学生笑着学习,增强了学习的自信心。

数列教学反思15

  作为一名高中数学教师来说 , 上好每一堂课,要充分挖掘教材,要从 " 教 " 的角度去看数学 , 还要对教学过程以及教学的结果进行反思。高中数学不少教学内容适合于开展研究性学习;教学组织形式是教学设计关注的一个重要问题 , 提炼出本节课的研究主题。对学生来说 , 学习数学的一个重要目的是要学会数学的思想。他不仅要能 " 做 ", 还应当能够教会别人去 " 做 " 。以下是我对本次课教学的一些反思。

  本节课主要有两个方面的内容,一是求等比数列前n项和的方法,即错位相减法;二是等比数列前n项和的公式。由于学生初次学习,以前没有接触过错位相减法方法,所以要想让学生自己总结出错位相减这一方法应该是比较困难的,所以我先从简单的多项式化简,构造两个类似的例子让学生自己比较它们的结构出发,给他们一个直观的感受。为拿出错位相减做铺垫。在教学中,学生也确实通过两个例子的比较,比较容易的总结出了这个方法。所以由学生自己来给出通项公式也就顺理成章了,拿出通项公式后,学生总习惯于直接套用公式而忽视对公式的分情况讨论,所以一定要反复强调。课后,在各位数学老师的帮助下,我认识到在强调公式的时候只是从公式本身出发是不够的',学生理解的也很模糊,如果在这里加上实际的例子效果应该会更好,这是以后需要加强的地方。后面在讲解例题的时候由于时间关系,没有在黑板上进行细致的演算,一带而过,高估了学生的计算能力。

  总之,结合新课程的教学理念进行相应的课后反思,努力上好每堂课,我相信可以不断提高业务能力和水平,从而更好地服务于学生。

【数列教学反思】相关文章:

数列教学反思05-18

数列求和教学反思02-14

数列求和教学反思07-02

数列的求和教学反思02-13

数列教学反思15篇03-02

数列的求和教学反思10篇07-30

等差数列教学反思08-10

【必备】数列教学反思15篇05-25

等差数列教学反思8篇09-20