当前位置:育文网>教学文档>教学反思> 求近似数教学反思

求近似数教学反思

时间:2023-03-03 09:20:57 教学反思 我要投稿

求近似数教学反思

  作为一位到岗不久的教师,课堂教学是重要的工作之一,通过教学反思可以有效提升自己的教学能力,教学反思应该怎么写呢?下面是小编为大家收集的求近似数教学反思,仅供参考,希望能够帮助到大家。

求近似数教学反思

求近似数教学反思1

  教学从生活出发,让学生感受数学与实际的联系。在引入环节,在菜市场买菜时,总价是8.53元,而售货员只收8元5角钱,这就是在求8.53这个小数的近似数。在创设情境环节,也结合生活实际,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的.引入新课,让学生感受数学与实际的联系。这样很自然地引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,再出题让学生说出把7.85元精确到元、精确到角分别是多少钱,这样把学习求一个小数的近似数的知识还原与生活,应用与生活。在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.664≈0.66后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.974≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

求近似数教学反思2

  教师明确小数的近似数的方法与整数的近似数相似。要用四舍五入法保留小数位数。要注意保留小数位数越多,精确程度越高这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的.思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

  但是上完之后,我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

  我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

求近似数教学反思3

  本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法——四舍五入法,让学生明确了整数的尾数是改写成“0”。同时感受求一个小数的近似数跟求一个整数的近似数实质是一样的.在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的',在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

  但是上完之后,我总觉得:学生掌握得不好,尤其是根据一个小数的近似数求原数可能是多少,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

  说真的,有几个后进生真的让我非常痛苦,我对他们只能从头开始,从最简单的做起,因为他们对求一个整数的近似数都没掌握好,基础知识不扎实,所以面对基础差异大的学生,要处理好教学是一个难点。

求近似数教学反思4

  《新课程标准》强调:数学教学应“从学生的生活经验出发,将教学活动置于真实的生活背景之中,为他们提供观察、操作、实践探索的机会。让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”《四舍五入法求近似数》一课之所以是教学的难点,很重要的一点原因就是教材知识与学生生活实际脱离,学生不熟悉,不感兴趣。俗话说:“良好的开端是成功的一半”,我在导入新课环节就紧紧抓住学生的生活实际:从我们班的人数这个准确数到我们学校大约有多少人,再到这两年我们学校大约投入多少钱改善学生的学习和生活条件。新课程理念认为,教师不应再是传统意义上的“教教材”,而应该是“用教材去教”。我认为要创造性地运用教材就要努力从学生身边挖掘、选取教学的素材,让数学走近学生的生活。学生所学的知识来源于他们的生活,学生必定倍感亲切,也就能很快地进入学习状态了。

  通过本课的教学,我意识到,一堂课要取得事半功倍的效果,必须做到以下几点:

  (1)要将新课标的思想、理念自觉地运用于教学实践中,必须关注学生已有的生活经验和知识背景,关注学生的情感和情绪体验,,使学生投入到现实的、充满探索的'数学学习过程中去。学生在学习本课知识时总是保持着比较兴奋的状态,时而交头接耳,时而议论纷纷,时而面面相觑,时而恍然大悟、开怀大笑,师生皆全情投入,宛若一场趣味盎然游戏。

  (2)丰富教材内容,源与教材,又不拘泥与教材。新课标强调数学内容增加密切联系生活、反映数学发展的新内容、新思想。教材知识只是一种学习的资源,教学时要灵活运用教材资源,补充和发展教材,为学生提供更为丰富的其它学习资源。我在本课教学中,将学生找到的一组数据作为教学素材,展开教学,充实了教材内容,又不拔高要求,为学生所喜爱和接受,为主动参与、积极思考、与人合作交流、积极探索新知奠定了基础,真正让数学走近了学生的生活!

求近似数教学反思5

  本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法——四舍五入法,并举例说明了具体做法,让学生明确了整数的尾数是改写成“0”。在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的.方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。我个人认为本节课最成功之处就是让学生比较了小数与整数近似数的方法,学生在掌握了新知的同时,对学过的知识也做了较好的复习。

求近似数教学反思6

  在导入新课环节我抓住学生的生活实际:从我们二年级各班的人数这个准确数到我们级大约有多少人,引入新课。我努力从学生身边挖掘、选取教学的素材,让数学走近学生的生活。学生所学的知识于他们的生活,也就能很快地进入学习状态了。生活中的许多数量是用近似数表示的,你在哪见过或听过?说明:没有办法得到一个精确结果或没有必要用一个准确数表示时,就用近似数。

  通过本课的教学,我意识到以下几点:

  让学生在生活中体验。这堂课通过学生收集生活中的一些数据,例如:班级人数、家用电器等一些数据,让学生初步感受这些信息,引入准确数,接着让学生根据自己的`生活经验,说说哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数的。从学生找出“大约、接近”等一些词可以看出。

  教学如何求近似数是本课的一个难点,我通过独立的看一看,自己试一试,小组讨论交流等活动,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。

求近似数教学反思7

  近似数在日常生活中有着重要的作用,它与精确数不同,它仅表示某一对象的一定范围。本课的学习是让学生认识近似数,理解近似数在实际生活中的作用及意义,掌握求近似数的方法,即四舍五入法。能根据实际问题的需要求一个数的近似数,培养学生的估计意识,发展学生的数感。上课时提供富有生活气息的不同班级学生的人数,让学生根据自己的'生活经验,说说32人大约是几十人,并谈谈理由。从学生用“接近”一词来表述理由可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入“近似数”和“≈”,顺理成章,学生非常容易接受。

  1.让学生在生活中体验。

  数学源于生活,生活中充满数学,并最终服务于生活。教材安排了两个生活情境,让学生读一读,注意划线的数在表达时有什么不同,引导学生发现“约”字,体会其表达的意思,从而引出近似数和精确数的含义。接着让学生根据自己的生活经验,联系本班人数说说32人大约是几十人,并谈谈理由。从学生用“接近”一词来表述理由可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入写法32≈30,顺理成章,学生非常容易接受。

  2.让学生在比较中体验。

  比较是常用的一种数学思考方法。通过比较事物之间的相同点和不同点。便于抽取出事物普遍存在的规律、区分出个体独有的特征。只有经历这样的过程,才能使直观感受到的经验得以提升,进入学习数学化的过程。教学如何求近似数是本课的一个难点,我通过出示480000到490000之间的数,让学生口答它们的近似数,并观察比较,和同学说一说“你发现了什么”,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律和方法,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。在合作交流的过程中,学生们把自己个性化的想法展示出来,使每个学生都得到不同程度的发展。

求近似数教学反思8

  《新课程标准》指出:数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发……学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。这一理念教师们都已知道,而家长们却不是很清楚,在辅导孩子学习时经常是脱离生活而纸上谈兵。本节课的教学是专为我校家长开放日而设计的。要求学生能根据要求用四舍五入法求小数的近似数,进一步掌握四舍五入法,丰富所学知识。我的设计分如下几个环节:⑴创设情景、揭示课题⑵复习铺垫,促进迁移;(3)自主探究、合作交流(4)独立学习,掌握知识。⑸畅谈收获,体验成功。

  【片断与反思】

  【片断一】

  创设情景、揭示课题

  师:昨天老师到银行办事,只见一位老爷爷和银行工作人员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,银行工作人员付给爷爷9.5元,爷爷觉得不合理,两人发生了争论。你能判一判:付多少利息钱给爷爷比较合理呢?

  生一:我认为应该付给爷爷9元5角4分,因为人民币的单位有只有元、角、分,第三位小数应该省略。

  生二:我有不同意见。第三位小数是“7”,它比5大,如果直接省略不妥当,,应该向前一位进1,所以应该付给爷爷9元5角5分。

  师:现在存在分歧了,你能谈谈你的处理意见吗?

  (学生交流片刻,一致认为应该付给爷爷9.55元)

  生三(若有所思):我听说人民币还有比分更小的单位是厘。不过我没见过几厘钱。

  师:你真是个见识多广的孩子。确实,生活中有“厘”这个单位,1分=10厘。由于这个单位太小了,在实际生活中很少用到它。

  生四:我发现在买东西的时候也没有用到“分”了,都是几元几角了。

  师:你确实很会观察。现在,随着国民经济的发展,人们的消费水平提高了,“分”这个人民币单位几乎从生活中取消了。平时涉及到“分”时,一般都“四舍五入”到“几角”了。

  生五:那我觉得应该付给爷爷9元5角钱。

  生六:我认为应该付给爷爷9元6角钱。

  群生一:9元5角

  群生二:9元6角(声音越来越大,争论得面红脖粗)

  师:好!争吵总该有个说理依据。今天我们学了求一个小数的近似数之后,你就会非常轻松地解决生活中这类现象了。(出示课题:求一个小数的近似数)

  【反思】

  数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识。为了创设更好的教学情境,了解教材内容体系,了解学生的兴趣爱好,应选择既贴近学生生活,又紧扣教材知识内容的实际问题作为情境,这里从学生熟悉的“存钱得利息”生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受数学与人类的密切联系,体会数学的价值、增强用数学的意识和学好数学的愿望和信心。

  【片断二】

  自主探究、合作交流

  (一).出示例题:

  例1.李明在运动会中的跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?

  接着明确提出要求:

  1.保留两位小数2.保留一位小数3.保留整数

  然后让学生进行独立思考,发表意见,说出结果及想法。

  1、保留两位小数

  师提示思考:保留两位小数要看哪一位上的数?

  (1)学生独立探索。

  (2)小组交流。

  (3)反馈后总结:要保留两位小数,就要省略百分位后面的数,要看千分位上的数。运用四舍五入法,“千分位上的3不满5,舍去。

  2.953≈2.95

  师讲解:保留两位小数,表示精确到百分位。

  师:6.587你会保留两位小数吗?把你的方法介绍给同学们吧。

  2、保留一位小数

  (1)小组合作学习。

  (2)组内交流,组长汇报交流结果。自己总结:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上是5,省略尾数后向十分位进1。十分位上9+1=10,满十又要向前一位进一,连续两次进位。

  2.953≈3.0

  师:近似数3.0末尾的0能不能去掉,为什么?

  生一:可以去掉,根据小数的性质:去掉小数末尾的0,小数的大小不变。

  生二:0不能去掉,如果去掉就保留到了个位。

  师:现在有两种不同意见了。你赞同哪一种说法?小组交流交流。

  生交流后,一致认为:0不能去掉。

  师:确实,近似数末尾的0不能去掉。它起到“占位和表示精确度”的作用。

  师问:刚才我们已知道“保留两位小数,表示精确到百分位。”那么保留一位小数,表示精确到哪一位呢?

  生齐答:保留一位小数,表示精确到个位。

  3.保留整数

  师:你认为该怎样处理呢?把你的意见和同桌交流。

  点名汇报:保留整数,表示精确到个位,就要省略个位后面的数,要看十分位上的数。十分位上的9满5,省略尾数后向个位进1。2.953≈3

  (二)小结:求小数近似数的方法。

  要保留整数(表示精确到个位),就要省略个位后面的尾数,把十分位上的数四舍五入;要保留一位小数(表示精确到十分位),就要省略十分位后面的尾数,把百分位上的数四舍五入……

  【反思】

  在数学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的'想法。在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。教师善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。

  【片断三】

  独立学习,掌握知识。

  (一)教学例

  2.豆豆身高0.984米,我们可以说豆豆大约高﹎﹎﹎﹎米。(你想保留几位小数就保留几位小数)

  学生思考,自由保留小数位数回答出0.984米的近似数,老师板书,请其余的同学说说分别保留了几位小数。

  生一:0.984米≈1米

  师:你知道他是保留了几位小数?

  生二:他是保留到整数的

  生三:这个数也表示精确到个位

  生四:0.984米≈1.0米

  生五:这个结果保留了一位小数

  生六:也是精确到十分位

  生七:我还会保留两位小数0.984米≈0.98米

  生八:保留两位小数又表示精确到百分位

  (二)师:今天我们学习的知识就在课本第73面。请认真看书73页,核对一下刚才例2中的结果,有什么疑问请提出来。

  如果没有疑问,就请找出书中你认为需要掌握的知识,做个记号。然后大声地读出来。

  【反思】

  传统的课堂教学要求教师重视知识的传授,强调知识的熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我把课本中的例题作为兴趣例题2,发散学生思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。

  对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。

  【片断四】

  畅谈收获,体验成功

  师:同学们,这节课我们学习了什么?有什么收获?

  生一:我学到了怎样求一个小数的近似数。

  生二:我知道求一个小数的近似数也要用四舍五入法

  生三:保留整数,表示精确到个位…………

  师:那么现在,你再会解决“老爷爷得利息”这个问题吗?

  生:(干脆利落)会

  师:老爷爷的利息单上写着税后利息:9.547元,你能判一判:付多少利息钱给爷爷比较合理呢?

  生一:我认为这个问题就是求小数的近似数。

  师:你觉得在实际生活中应该保留几位小数比较合理呢?

  生二:我觉得在实际生活中,应该保留一位小数。因为大家都知道,我们现在的用到人民币最小的单位是角。

  生三:9.547元≈(9.5)元

  群生:(欢喜地)对,应该付9.5元

  师:你发现生活中哪些地方有小数?请你大声说出来。你想精确到哪一位?考考你的同桌吧。

  生同桌互练。

  师:小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看还有什么地方有了小数近似数,下节课大家再来继续交流。

  【反思】

  学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,是必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。学生在解决完“正确处理老爷爷的利息”后兴奋不已。然后又“参与寻找生活中的小数”过程中,从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密,学生真切感受“生活中处处有数学。”体会到了数学在生活中的用处。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。

  【点评与拓展】

  《新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。教师应激发学生学习的积极性,向学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课执教者立足于从现实生活入手,创设教学情景,生成数学问题,引发学生的探索兴趣,交给学生学习方法。体现了“数学源于生活,又用于生活”的教育理念。

  灵活地处理教材:《新课程标准》提出:教师要创造性地使用教材,不能拘泥于教材。教材中以单独一个例题(量豆豆的身高)出现,执教者巧妙地做了变动,从生活实际引出学生跳远的成绩2.953米,然后重点教学。使学生体会到生活中有数学,生活中用数学,提高了学生的数学应用意识。把教材的例题作为次重点例2,让学生看图,想保留几位小数就保留几位小数,学生掌握了知识,也提高了兴趣。这些构想和尝试体现了教师对教材使用的科学态度,也表现出了对新教材处理的灵活性。

  开放的教学风格:《新课程标准》提出:数学教学要给学生提供充分参与数学活动的机会,让他们学会从数学学习中发现问题,通过合作交流,主动探索,寻找解决问题的方法,弄清数学知识之间的联系和区别,体现学生是数学活动的主体,教师是数学活动的组织者、引导者和合作者的理念。执教者从“爷爷的利息”入手,生成了问题。然后充分尊重学生,让他们谈谈该如何处理……整节课教师在为学生创设民主、开放、和谐的学习氛围,学生学得兴趣盎然。

  “教学与方法”、“生活与数学”、“教材与课堂”这些关系的处理,从本节课我们可以看到高老师正在努力尝试……

求近似数教学反思9

  案例:求一个数的近似数

  师:今天,我们来认识另外一种数。下面,把书本打开,看看书本上是怎样介绍另外一种数的。

  生看书自学课文第一、二自然段。

  师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。

  全班交流。

  生:我知道另一种数叫近似数,它表示大概有多少。

  生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。

  生:我来说,我家离学校骑车大约要10分钟。

  ……

  师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。

  学生再次看书自学。

  生:我知道用四舍五入法可以求一个数的近似数。

  四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听。

  生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。

  生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。

  师:你们都说得很好。再来讨论一下,你认为979省略最高位后面的尾数约是多少?919呢?4919呢?4499呢?

  生依次回答,对4499出现的错误较多,认为应该约等于5000。

  师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。

  生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。

  师:弄懂了四舍五入的意思,我们一起来练一练。

  学生做练习第一题。

  师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。

  生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。

  师:一起来估算一下328×4约等于多少?

  生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。

  课后反思

  在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教材这一媒体,让学生进行自学。俄国教育家乌申斯基说过:“没有任何兴趣,被迫进行学习会扼杀学生掌握知识的意愿。”所以我在课前通过设问:“来认识书本上介绍的另外一种数”,激发学生乐于看书的兴趣。通过自学,学生掌握了近似数的'概念。并能联系实际,说说生活中的近似数。然后,再次利用书本,让学生看书自学四舍五入法。并把自己看到的内容跟同桌交流,然后说给全班小朋友听。数学教学过程伴随着数学交流的过程。包括教师与学生的交流、学生与学生的交流、学生与教材及教学媒体的交流、以及学生的自我交流等。课上,我除了让学生自学,与教材进行交流外,还让学生把自己的想法说给同学听,与学生进行交流,培养学生的交往能力。最后,利用书本,让学生自学近似数的应用。整堂课,教师只是通过提问,让学生围绕问题进行自学。从头到尾,利用数学书开展学习。学生学得开心,学得主动。

  但在自学过程中,我也发现存在不少问题。如:教师的问题该如何设计;怎样引导学生进行自学,而不是简单的把书本上的内容看一遍。

求近似数教学反思10

  教学内容

  课本73页例1

  教学目标

  1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。

  2、通过旧知迁移新知的方法,让学生掌握知识。

  3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重难点

  求一个小数的近似数的方法

  理解保留小数位数越多,精确的程度越高。

  教学过程

  一、复习

  1、把下面各数省略万位后面的尾数求出它们的近似数。

  734562 38460 50074 10274

  让一位学生说出求近似数的方法。

  2、下面的空格里可以填哪些数字。

  32()546≈ 47()03≈

  师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数

  二、导入新课

  1、课件显示例1图。

  他们是怎样得出豆豆身高的近似数的.?

  (1)保留两位小数

  师板书:0.984≈0.98 保留两位小数

  用什么方法?(四舍五入法)根据学生回答师板书:四舍五入

  引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。

  (2)保留一位小数

  师板书:0.984≈

  让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。

  接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。

  (3)保留整数。

  师板书:0.984≈

  学生独立完成,集体订正,说出想法。

  小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位。。。。。。

  三、巩固练习

  1、课本74页做一做。

  2、课件显示填空题。

  3、课本练习十二第一题。

  4、课件显示判断题。

  四、总结

  这节课你有什么收获?

  五、作业

  课本练习十二第2、5、6题。

  课后反思:

  在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精神开始集中了,但是已经占用了上课的三分钟时间。

  求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。

  纵观整堂课,发现仍然存在一些有待改进的地方。

  1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。

  2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。

  3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。

  上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。

求近似数教学反思11

  学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

  然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

  1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的`数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

  2、前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

  针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有大小的改变数的大小;

  3、多讲多练,在不断的重复练习过程中,让学生自悟。

求近似数教学反思12

  生活中我们经常会用到四舍五入法去求一个数的近似数,而在讲授这节课的新授知识前,我先组织学生在各种媒体上搜集一些数据,并说出这些数据的实际意义,体会使用这些近似数的意义,感受近似数与实际值之间的偏差

  。本节课我着中强调了“四舍五入”取近似值的方法:“四舍五入法”就是指把要处理的数的某一位以后的'数字舍去后,如果被舍去部分的首位数字小于五,保留部分不变,这就是我们所谓的“四舍”,如果被舍去的部分的首位数字大于或等于五,就在保留部分的最后一位加上一,这就是我们所说的“五入”。讲这个部分时,我引导学生明确取近似值到某一位时,只要看它后一位的数字,再用“四舍五入”即可,换另一种说法,只要根据要省略的尾数的最高位来考虑就可以了,不要管尾数的后几位是多少。

  在教学过程中也出现了不少生成性的问题是之前没有考虑到的,学生对于“四舍五入”仍然比较陌生,对于四舍五入到哪一位这种说法没有真正的理解,搞不清楚省略的尾数要从哪位开始,在进不进一的问题上也出现了混乱,在以后的练习课上要着重对这些问题进行强调和练习,让学生能够结合学习的知识,将一些数据先变成近似数,再改写成以万以亿为单位的数。

求近似数教学反思13

  师:(出示统计表) 四个城市小学生人数情况统计表

  城 市 名 称 小 学 生 人 数

  A 91995

  B 94955

  C 95955

  D 98955

  师:根据这个统计表,你能知道什么?

  生1:我知道A城市小学生最少,D城市小学生最多。

  生2:我知道这四个城市小学生人数的后三位数都是995,万位上都是9。

  生3:我知道这四个城市的人数都比9万多,都比10万少。

  师:同学们真会发现!这些数据都是经过认真调查统计获取的,一个不多,一个不少,都是准确数。(板书:准确数)但在日常生活中往往不说得这样准确,而是主说出大约是多少。例如,我们班有67人,大约是几十人?

  生:大约是70人。

  师:能说说理由吗?

  生:因为67人接近70人,所以大约是70人。

  师:像这几个城市的小学生分别大约是多少万人,为什么?

  生1:A城市大约是9万人,因为91955接近9万。

  生2:B城市大约也是9万人,94955也接近9万。

  生3:C城市大约是10万人,因为95955接近10万。

  生4:D城市大约是10万人,因为98955也接近10万。

  (师进而引出“近似数”和“≈”,板书如下:)

  91955≈9万

  94955≈9万

  95955≈10万

  98955≈10万

  师:刚才我们把这几个数写成了用“万”作单位的近似数。为什么有的约等于9万,而有的约等于我10万,请你们仔细观察这几个算式,看有什么发现?

  生1:我发现这几个数只有千位上的数不同,千位上是1、4,近似数是9万。

  生2:我有补充!千位上是5、8,近似数是10万。

  生2:我发现这几个数的近似数与千位上的数有关系,如果千位上的数比5小,这个数就更接近9万,所以它们的近似数是9万;如果比5大或等于5,这个数更接近10万,所以它们的近似数就是10万。

  师:同学们说的'太妙了!如果把一个数写成用万作单位的近似数,关键要看千位上的数,如果小于5就舍去,如果满5就向前一位进“1”再把后面的数舍去。这就是我们今天学习的“四舍五入法”。

  生1:老师,我有不同意见!如果千位上是5,而这个数不是95955,而是95000,我觉得它的近似数可以是9万!就不能“五入”了!

  生2:但也可以是10万!

  生3:我认为既可以是9万,也可以是10万!

  师:能讲讲道理吗?

  生1:因为95000比9万多5000,比10万少5000,它既接近9万,也接近10万,所以它的近似数可以是9万,也可以是10万。

  生2:因为95000离9万和10万一样远,所以说它的近似数是9万行,是10万也行。

  师:你们说的还真让人信服!像95000的近似数,完全可以这样理解!还有其它不同意见吗?

  ……

求近似数教学反思14

  本节课是人教版,小学二年级,第二单元,万以内数的认识,第三课时,万一内数的大小比较和近似数。

  从整节课来看,还是令人满意的,在本节的教学过程中,我首先采用数数,数的组成,和千以内数的大小比较作为铺垫引导学生很自如的'过渡到;万以内数的大小比较并且掌握了比较的方法,能正确的解决日常生活中的实际问题,在近似数这一块学生掌握的不好主要是在取近似数时,不是与准确数最接近的整十、整百整千或整万的数。

  那么造成学生对近似数的理解不确切的原因主要有以下几个方面;(1)近似数是一个新的概念学生没有准确的理解这个名词(2)板书练习的少,生活中的实际问题结合的少(3)练习比较单一(4)学生课堂练习的时间少一些。

  如果让我重新设计这节课,我会把重难点放在“近似数”上。板书指导多样化结合日常的生活,帮助学生理解,增加巩固练习的内容和时间,引导他们动脑、动手、拓宽学生的思路正确理解近似数这一名词,我认为这样会收到事半功倍的教学效果。

求近似数教学反思15

  教学目标:

  1.结合豆豆测量身高这一现实情境使学生知道求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。

  2.能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  教学重点:求小数的近似数的方法。

  教学难点:理解表示近似数时,小数末尾的0不能去掉。

  根据学习目标,结合课本内容,我制定了两个学习任务:

  1.探究求小数近似数的方法。

  2.比较理解近似数1和1.0。

  下面就整个教学过程的设计进行简单的分析:

  在激情导课环节,我先创设菜场买菜付钱情境,又结合课本的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。然后回忆整数的近似数方法,为学习新知做铺垫。

  在民主导学环节,任务一是让学生探究求小数近似数的方法。学生先自学,然后在小组内交流学懂的知识。最后运用学会的方法解决问题。进行展示时,主要依靠小组,组间交流互动。让学生总结出求近似数的方法。当学生还有表达不完整的时候,我再进行补充小结。在这里,我主要强调“精确”到某一位的另一种表达方式,即省略这一位后面的尾数。以帮助学生进一步理解求近似数的方法。关于近似数末尾的0为什么不能去掉,为了帮助学生理解这个问题,突破本节课的难点,我设计了任务二比较理解。

  . ≈1 ( )

  . ≈1.0( )

  1.思考有几种填法。把能填的数写在后面的括号里。

  2.小组同学说一说近似数1和1.0的'不同之处。

  在学生展示交流完毕,我又出示了数轴图,目的是让学生直观的感受到近似数1和1.0意义的不同,精确程度的不同,1.0比1更精确。由此得出“表示近似数时,小数末尾的0不能去掉”。

  在检测导结环节我采用了课堂检测单,检测题围绕学习目标,检测学生对当堂知识的理解。第二题是结合生活实际提出,目的是再次让学生感受到生活中的数学,培养学生做一个生活的有心人,知识的发现者。

  在进行小组交流时,由于一开始没有调动起学生的积极性,课堂显得有点沉闷。可是在后面的学习中,学生逐渐的打开了思路,积极主动的参与到学习中来。不但自主探索到求近似数的方法,而且理解了为什么表示近似数时末尾的0不能去掉。可以说两个任务的呈现都比较合理,有可操作性,引导学生完成学习目标的方向非常明确。任务二的呈现稍显难度,但这也是这堂课的亮点。采用数形结合的方法,为学生直观的理解知识搭建了合理的平台。

  在以后的教学中,我觉得应该在钻研教材方面下大功夫,只有这样才能更好的用教材,呈现合理的学习任务。对学生学习方法的培养也是课堂教学的重要任务,我们一定要努力处处为学生着想,时时为学生服务,课课让学生精彩!

【求近似数教学反思】相关文章:

《求小数的近似数》教学反思03-22

《求一个近似数》教学反思03-23

求近似数教案04-07

《求小数的近似数》教案03-18

近似数教学反思07-22

小数的近似数教学反思04-22

商的近似数教学反思04-19

积的近似数教学反思04-15

《商的近似数》教学反思03-28