《三角形的内角和》教学反思15篇
身为一位优秀的教师,课堂教学是重要的任务之一,借助教学反思我们可以拓展自己的教学方式,来参考自己需要的教学反思吧!下面是小编帮大家整理的《三角形的内角和》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
《三角形的内角和》教学反思1
本节课的教学目标是:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学习活动的`过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,最后的游戏也很有趣味性,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。
本课的不足之处是习题的设计受课本资源的限制,没有大胆突破教材,充分利用生活资源。让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
《三角形的内角和》教学反思2
《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
一、创设情境,营造探究氛围
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?
二、小组合作,自主探究
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途敬验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的`三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
《三角形的内角和》教学反思3
《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习
热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的'方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三
个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。
本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
《三角形的内角和》教学反思4
我在讲“认识三角形”时,“三角形内角和等于180度”这一结论学生早知晓,为什么三角形内角和会一样?
这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪、之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。
有的学生将三角形的三个角都撕下来拼接到一起,有的'同学将三角形的三个角沿着三角形的中位线折到一起……其中有一组同学竟然用稚嫩的声音说:可以用数学方法来证明。于是他们阐述自己借助与三角形底边平行的线与三角形所形成的内错角进行证明的方法。
至此学生完成了感性认识到理性认识的转化过程,充分展示了数学地思维方式和思想方法。
《三角形的内角和》教学反思5
《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的基础上学习的。本节课我主要设计了四个环节,提出问题→合作探究→学以致用→分享收获。
第一个环节中,我先设计了一个情境,三角形三兄弟(锐角三角形、钝角三角形、直角三角形)争论谁的内角和大,一下子激起了学生的探究兴趣,这个时候就有学生说一样大,此时引出课题,同时学生提出问题:什么是内角?三角形的内角和是多少度?
第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。
第三个环节是学以致用,我设计了三个闯关游戏,第一关是已知两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个相同的三角形组成一个大三角形后,大三角形的内角和是多少度。
反思师生互动的过程,本节课的优点有:
1、本节课中学生探究欲很高,课堂研讨气氛浓厚。
2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学生事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的能力。
3、量、撕、折的.动手实践活动,不仅提高了学生的动手操作能力,而且让在动手的同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
4、课堂练习题的设计层层递进,以及实践活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。
5、学生在分享收获中,各抒己见,提升了自己的表达能力和归纳能力。
本节课需要改进的地方:
1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的思考空间,而是直接介绍了“撕、折”的方法,让孩子们进行探究,课堂中缺少了更多的生成。
2、课堂中设计了实践活动环节,学生们非常感兴趣,但是由于时间不充足,有些学生理解的不够充分,这个环节学生的参与度不够,考虑可以放到课后思考。
《三角形的内角和》教学反思6
这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的教学策略:
(1)创设问题情境,引导学生发现问题,思考问题。
本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,继而借助特殊三角形(三角尺)初步感知这些三角形的.内角和是180度,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的验证规律。
(2)创造解决问题的环境,给充分的机会和时间让学生解决问题。 学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。
对于这堂课的困惑,我觉得在有效教学当中,应该如何更好地处理“预设”与“生成”之间的关系,如何巧妙地抓住课堂中的生成,适时调整教学环节。教学设计在准备阶段,我已预设了相关的教学环节。但真正在课堂实施时,可能会出现一些不可预知的因素。如在这节课上的练习环节中,有这样一道题目:已知直角三角形的一个角是40度,求第三个角的度数。在全班交流的时候,有一个学生很快就说出90度-40度=50度。其实在预设教案时,这种方法是最后才提到的,此时我就没有能好好去把握这个有价值的生成资源,把学生聚焦在如何利用简算来解决问题。我完全可以让这些学生说说自己的思考过程,这样做既让学生在解题方法上得到扩充,同时又符合学生的认知规律。要把握在课堂上出现的一些“生成”的资源,如何加以好好的利用。
不足之处:
1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。
2.评价语言和方法都太单一,激励性评价没有层次。发言的学生面比较窄。
3.教师语言不简练,老重复,总怕学生听不清楚,听不明白,语言罗嗦是我一直以来的大毛病,以后要克制自己学生会说的自己不代替,尽量不重复。
4.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。
《三角形的内角和》教学反思7
本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的'认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。
《三角形的内角和》教学反思8
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
在课堂中,我引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的`三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
《三角形的内角和》教学反思9
探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。
一、“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。
“是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。
再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的.大小如何变化,它的内角和是不变的。通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。同学们通过自主实践、合作探究完成了本节课的教学任务。
二、练习设计,由易到难。
在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
三、发挥多媒体的教学辅助作用
在用“折”的方法验证三角形内角和是180度时,虽然发言的学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。准确地找到三角形的中位线,使折纸的关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。
四、存在的不足
在教学中只是让学生体验到各种类型的三角形和大小不同的三角形基本图形的内角和等于180度,在一些练习中出现了求变化得到的三形内角和时出现了认知的盲点,如,如两个完全一样的小三角形拼成一个大三形角形内角和等于多少?还有部分学生出现等于360度的现象,这些如能在课堂上让学生练习,学生对于三内角形内角和的性质的认识会更深入。
《三角形的内角和》教学反思10
我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。
教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的数学教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,每一个教师既会有融教学科学与艺术相结合的佳作,也难免出现有失水准的拙课。通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。
本节课的教学先通过三角形王国的小矛盾,让学生角色扮演导入新课,激发学生学习兴趣,进而引出“三角形内角和是180度”的猜想,然后组织学生自主探究、操作,在实践中验证猜想,得出结论。然后利用已学知识,解决相关问题。
本节课学生学习积极性比较高,以下一些方面还是做得比较好的:
教学设计环节紧凑,思路清晰。用了大量时间让学生小组进行实践操作,进行小组实验,让他们自己感知探索出三角形内角和,注重了学生操作能力和小组合作探究能力的培养。
1、用了量、算、拼,折各种不同的方法,让学生从不同角度探索,发现思考,都可以得出三角形的内角和是180°的结论。感受数学的严谨和魅力,也使得这个知识点的理解更加透彻。
2、当完全放手让学生实验操作调整为要求明确以后,教师适当进行一些演示,如果学生还不能完成操作,则由教师完成,只要学生能够拿着一个拼合好的图形进行观察,我就把课堂节奏掌控住,把他们的注意力引到定理的证明过程上,很好的完成教学目标。
3、设计了不同层次的练习题,判断题都是学生平时容易出错的题目,在课堂用直观的课件显示出来,使学生印象深刻。然后逐步加深难度,到最后的思考题,使得不同层次的学生都学有所得。
本堂课也还有很多问题值得我深思,改进:
1、传统的教育模式让学生和老师都习惯于填鸭式的.学习方法,学生总是被动的接受知识。让学生自己实践操作找结论,部分学生却不知从何做起,没有自己动脑主动学习的习惯。今后应加强学生自主思考能力的培养。
在拼一拼的活动中,老师应该让学生先把三个角标号,撕开后再拼。在拼成平角后要用量角器或者直尺测量一下,看拼的图形是不是平角,要用严谨的态度对待,而不能光凭眼睛来判断。
2、在进行拼、折活动时,部分学生不知道怎样折成一个平角,撕开之后就找不到要拼的角的时候,老师就应当马上去帮助,去指导。当学生体验认知过程时,一定要让他们感受学习的愉快,获得成就感,只有这样才能激发学生学习数的兴趣,学好数学的信心。
3、时刻要注意自己和学生语言、动作的规范,体现数学的严谨性。在学生读题,回答问题的时候,要说出度数单位。在练习,书写时也要注意度数单位,强调格式。
由于是借班上课,对学生了解不够,在课上没能以学生为主,有的内容完全可以交给学生讲解,我没能及时体察到这一点,效果不是很好,课堂气氛没能调动起来,一位老师说的好,公开课就是表演课,但主角应该是学生,老师只能做导演而不能替代学生的角色。上完课后,很多老师给了我许多宝贵的建议,比如:我上课时表情呆板于第三个练习题,讲解不够详细,大部分学生估计没听懂,我没能做到及时根据学生的表情、应答人数等细节及时调整讲题的速度??,在聆听诸位老师的点评时,有时让我有种茅塞顿开的感觉,非常感谢各位老师的精彩点评。
作为一名青年教师,我觉得教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的政治教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。
教学过程中达到的预设的教学目的、良好的教学方法、我都会在课后记下来,供以后教学时参考使用,也可在此基础上不断改进、完善、推陈出新。同时对课堂教学中存在的疏漏失误之处,也要对它们进行系统地回顾、梳理,作出深刻的反思、探究和剖析,使之成为今后再教学时的参考物,类式的错误不在发生。 我执教的本节课在小组合作交流讨论及评价等方式来组织教学活动时,做得还不够,收放得不够自如,同学也没有完全养成良好的行为习惯,不能高质量地完成某些教学环节,但是,我觉得一个成功的好老师就是要在教学上敢于突破和创新,我应该大胆放手让学生去操作、去探索。
叶圣陶先生曾经说过:“教是为了不需要教,教师不但要教给学生知识,更要交给学生思维科学的学习方法。”在素质教育改革的今天,在新形势下,作为一名青年教师,在指导学生如何更好的学习上,还任重道远。但我会坚持以对学生负责为中心,不断学习先进的教学理念和育人方法,不断学习反思,在反思中不断提高,并结合课堂教学实践,为追求高效课堂而不断完善自我。相信“雄关漫道真如铁,而今迈步从头越”,我会在今后的教学岗位上,“路漫漫其修远兮,吾将上下而求索”。
《三角形的内角和》教学反思11
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的`过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许诗开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班硷那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
《三角形的内角和》教学反思12
新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。因此让学生经历研究的过程成了本节课的重点。既让学生经历“再创造”----自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮助学生去进行这种“再创造”的工作,最大限度调动其积极性并发挥学生能动作用,从而完成对新知识的构建和创造。
本节课我基本达到了要求,具体表现在以下2个方面。
1、为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。
2、充分调动各种感官动手操作,享受数学学习的快乐。在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的'方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。
总之,充分让学生进行动手操作,享受数学学习的乐趣,是我这一节课的出发点,也是这一节课的最终归宿。
《三角形的内角和》教学反思13
备学提纲:
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
2、阅读课本P28-29,记下收获和问题。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:
1、什么是内角?
2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗
3、两个三角形拼成一个大三角形,画出来的时候中间有1竖,1竖两边的直角为什么不算呢?
4、所有的三角形的内角和都是180°吗?
5、用正方形纸折几次,才有8个三角形呢?
6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?
存在的问题:
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季xx提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的'自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:
孙xx和陈xx两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘xx今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
《三角形的内角和》教学反思14
新课标提出“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的.组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课。引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。
总之,在上课的过程中,给了我学习的机会,在今后教学过程中该如何预设好每一环节,如何说好每一句话,让自己的课堂效率更高。
《三角形的内角和》教学反思15
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将和“小三角形”将内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1、重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2、在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3、重视问题预设,培养“空间观念”。
“问题的'提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
【《三角形的内角和》教学反思】相关文章:
三角形的内角和教学反思02-19
《三角形的内角和》教学反思03-03
《三角形内角和》教学反思04-05
三角形的内角和教学反思优秀10-27
《三角形的内角和》教学反思(15篇)03-11
三角形的内角和教学反思15篇03-27
《三角形内角和》教学反思(通用12篇)08-04
《三角形的内角和》教学反思合集15篇03-11