植树问题教学反思15篇
作为一名到岗不久的人民教师,教学是我们的工作之一,写教学反思可以很好的把我们的教学记录下来,教学反思应该怎么写才好呢?下面是小编为大家收集的植树问题教学反思,欢迎大家分享。
植树问题教学反思1
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的.策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
植树问题教学反思2
本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。
成功之处:
1.多种方法解答,拓展学生的思维。在例3的'教学中,通过学生自主探索,发现四种解题方法如下:
方法一:黑色棋子+白色棋子=可以摆的棋子
19×2 + 17×2
=38+34
=72(个)
方法二:每边的个数×4边=可以摆放多少个
18 × 4 = 72(个)
方法三:每边能放个数×4-重复的4个=可以摆放的棋子
19×4 - 4
=76-4
=72(个)
方法四:每边看作17个,有4边,再加上四个角的4个。
17×4 +4
=68+4
=72(个)
通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。
2.不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。
不足之处:
在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。
再教设计:
每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
植树问题教学反思3
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的.个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。
植树问题教学反思4
第二课时教学内容:
教科书第120页的内容
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
教学过程:
一、复习铺垫
同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种
棵数=段数+1棵数=段数棵数=段数-1
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
二、引入新课:
前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目
我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?
2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误
3、研究在其他封闭图形上种树:
A、你还想在什么封闭路线上种树?(指名回答)
B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
C、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
三、尝试练习:
练习第121页的做一做上的习题
学生尝试练习,交流,指名板书解题方法。
四、课堂小结。
这节课你最大的收获是什么?
第三课时课题:围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。
课前准备:课桌围成回字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,
黑白两对手,
有眼看不见,
无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
32+2=824=8
33-1=834-4=8直接点数。
教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的`方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数最外层总数
3
4
5
6
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题
植树问题教学反思5
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。一、通过课前活动,以中央电视台公益广告为素材,让学生感知植树与数学的联系。二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、抓住《植树问题》的数学本质,注重学习方法的培养
因为现在的家长都非常重视对孩子的,因此许多孩子都通过各种各样的途径或多或少的接触过此类问题,甚至部分学生可能已经完全掌握此类问题。但是可以肯定还有许多孩子对此类问题还是感到陌生,毕竟我们的数学课堂要顾及每一位同学的发展。因此对于此类问题的教学因采用发现学习。通过孩子对问题的探索和讨论逐步得到结论再用得到的结论回到生活中解决问题。例如在《植树问题》中,因为课始了解到许多孩子已经接触或听说过,因此课的开始教师故意把问题复杂化,把路的长度拉长,在处理教材时我把例题中的100米改为500米。其优点是让学生产生矛盾冲突,产生不同的结果,然后提出解决或验证的方法,引导学生可以采用画图的方法,因为路太长,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择短一点的路来进行研究,围绕问题解决过程中的中心环节,指导学生通过分析、比较、判断、推理等思维活动,积极探究和挖掘具体事物的数学本质,并最终将问题以数学模型的方式呈现出来,使复杂的问题本质化、简洁化、一般化,从中寻找规律,再来判断和确认课始的猜想或结果是否正确,最后方法解决问题。这样一来,学生对这一类问题的解决就有了共同的程序与方法。而这对学生数学思想的培养,无疑有着无可替代的作用。
二、注重学生的`自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽
松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,根据不同路长的路设计植树,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变路长后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:500米长的小路,按5米可以平均分成100段,也就是共有100个间隔,而栽树的棵数比间隔数多1,因此一共要准备101棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,老师加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学
生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站台的事件,街道两旁路灯的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以精美图片的形式让孩子们了解生活中与植树问题相似的现象,感受数学的美。
从本节课的教学效果来看,由于考虑到学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,预设的教学目标是顺利完成的。尽管本节课有值得高兴之处,但仍存在一些不足,如:课堂上生成的资源,没能及时的点拨学生,小组合作学习形式太少,因此生生交流不够充分等。这些问题有待今后教学中引起重视并加以改善。
植树问题教学反思6
一、教学设计有深度、有厚度。
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题――猜想验证――建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。
对于植树问题的探究,不仅让学生通过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅要知其然,还要知其所以然。
由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我知道了自己今后应该努力的方向。
二、敢于放手让学生去探究,体现学生的'主体地位。
整堂课,我都比较注重学生的主体地位。因为我知道,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生通过自己的猜测得到答案。
当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较轻松愉快了。
三、注重教学思想的渗透和学习方法的传授。
在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都特别重视线段图的运用。
当然,这节课也有许多的不足之处,列举几条:
1、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。
2、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情况下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。
3、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。
4、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。
总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。
植树问题教学反思7
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的'不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
植树问题教学反思8
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的.从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
植树问题教学反思9
《植树问题》是人教版义务教育教科书五年级数学上册第七单元数学广角的内容。这一内容主要涉及到的知识点有:两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。我选取的是第一课时两端种植,怎样才能让学生即能学会,还要学的轻松呢,我反复研读教材,两端其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法――化归思想。模型思想,同时使学生感悟到应用数学模型解题所带来的便利。我这节课重点教学两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手,奇妙运用数形结合的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的`起点,从而用一一对应的思想方法让学生理解段数+1,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。
“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、设立公交车站等等。让学生从中悟出植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。整节课,大多数学生的思维表现的很活跃。
三、本节课的不足:
1、把学生对于段数+1应做更多的探究,部分学生并没有理解这个知识点,只会运用,应再多加讨论,让学生明白其中的原因。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
教学是一门遗憾的艺术,虽然这节课我很尽心尽力,但也留下了很多遗憾,新的教法的一种大胆的尝试过程,总在摸索中不断完善。在准备这节课时我参考了很多资料,学习了很多方法,为的是让这节课的遗憾能少一些。我把握每一个细节,问题及时解决,站在学生的角度去思考问题,使得数学学习的思想方法得到深度的渗透。
植树问题教学反思10
《植树问题》是智慧广场中的内容,主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二、注重学生的自主探索
在探索新知这个环节,是这样设计的:
快乐探究:
在20米长的小路一边等距离植树,两端要栽,可以怎样栽树苗?
1、把上表补充完整。
2、“两端要栽”的时候,我发现:棵树比间隔数
我能用等式表示棵数与间隔数之间的数量关系:
棵数=学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的.情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法――画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
五、存在问题:
把学生估计过高,以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数—1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思11
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
三、对学生估计过高
这节课还有不足的.地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思12
植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的.。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。 在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。
这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
植树问题教学反思13
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。这节课我完全受柏继明老师的手与数学思想所影响,今天做一节关于《植树问题》的数学课,我的设计初衷是希望学生可以自始至终都围绕着手来研究这一典型问题,让学生明白点与间隔的关系。学生开始似乎可以依据小手来了解点与间隔的关系。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的.高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。使学生直观认识并总结出了间隔和植树棵数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站的事件,上楼问题等都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,
不足:
我依然出现了课堂调控差的问题,学生能够理解我出示的第一个有关植树问题的铺垫问题,我也总结了植树问题的间隔数×间隔长度=全长的公式,因此,在出示例一后,就急于让学生自己独立完成。而学生对于公式中的各部分名称可能还不是很熟悉,因此,公式变形困难,需要教师还要讲解的地方教师反而放手了。
植树问题教学反思14
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、 教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”()
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的'方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
植树问题教学反思15
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的.小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的方法
3)学生汇报
4)引导总结:
两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
【植树问题教学反思】相关文章:
植树问题教学反思06-20
《植树问题》教学反思05-25
《植树问题》的教学反思03-10
植树问题教学反思02-21
实验《植树问题》教学反思10-08
植树问题教学反思(优秀)06-20
《植树问题》教学反思【必备】07-09
(推荐)《植树问题》教学反思07-26
数学《植树问题》教学反思10-29
《植树问题》教学反思(优选)06-28