分数除法教学反思15篇
作为一名到岗不久的老师,我们需要很强的教学能力,写教学反思可以快速提升我们的教学能力,来参考自己需要的教学反思吧!下面是小编收集整理的分数除法教学反思,欢迎阅读,希望大家能够喜欢。
分数除法教学反思1
今天学习的是六年级分数除法的应用题的最后一个课时,内容是工作总量是“1”的工程问题。此前也学习过工程问题,比如“一天路长90米,甲队每天修6米,甲队每天修4米,两队合修几天可以修完?”通过让学生听写题目、自主解答,我引导学生复习了“工作总量÷工作效率=工作时间”。
接着我提问复习:“一条路,一个修路队4天修完,每天修这条路的几分之几?”由于数据小,学生不难看出每天修这条路的1/4;老师接着问:这里的1/4是怎么计算出来的?学生也知道是1÷4得到的。接着问:“这里的“1”“4”“1/4”分别是工程问题里的哪个量?至此老师强调:这里的工作总量不是具体多少米了,而是“一条路”;这里的工作效率也不是“每天多少米”了,而是“每天修几分之几”了。
复习至此,我出示例题:一条路,一队单独修12天完成,如果二队单独修18天完成,两队合修多少天可以修完?”让学生分别写出一、二队的.工作效率后,让学生利用迁移的方法自主解决。
需要说明的是:我没有利用课本里的教学路径来教学本课时,课本里主要采用举例的方法来说明一条路无关长短,不影响结果;我主要利用“迁移”的方法直接让学生在对比理解中解决。这样节省了时间,也利于学生理解能力的培养。自我觉得,今天这节课还是值得在往后的工作中推及到其他课时。
分数除法教学反思2
本课主要学习用方程解决简单的分数的实际问题,并巩固分数除法的计算方法。教材中提供了一个主题图,这个主题图为学生提供了丰富的数学信息,创设了问题情境,让学生对分数除法应用题这个在小学阶段历来的教学难点提供了学习的方法与帮助。特别是在解决分数乘除混合问题时,学生是难以判断是用乘法还是用除法解答的,为了突破这个难点,我鼓励学生用方程解决除法的问题,我充分利用这幅主题图,让学生大胆地提出问题,鼓励学生以分数乘法的知识进行新旧知的学习迁移。反馈时,学生出现多种解决问题的策略,我做了适时的'引导,鼓励学生用方程解决此类问题,但也有学生选择用除法计算,我及时引导学生做好分析,并借助线段图的功能理清思路。对学习能力强的学生我提出用两种方法解决这个问题,虽然题目并不难,但要加强对数量关系的分析,鼓励学生找出问题情境中的数量关系,进一步理清数量关系,避免学生机械套用题型的情况,引导学生根据情境中的数量关系和运算的含义解决问题。
办法想了很多,但一些学困生还是不理解如何解题,还得想办法!
分数除法教学反思3
这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的`分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
分数除法教学反思4
今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。
自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的.教学时间的容量,那么遗憾也许会降到最低程度。
通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。
分数除法教学反思5
分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
1.以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2.分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的'动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。
从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。
分数除法教学反思6
分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。
一、成功之处
1.恰当铺垫,有利于分散难点。
为有效地分散算理,教学中设置的教学情境,以比较简单的题目形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?……在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4,也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生更好地认识分数与除法的'联系。
2.实际操作,感悟新知识。
《数学课程标准》指出:“数学教学,要让学生亲身经历数学知识的形成过程。”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三,也可以说是3张饼的四分之一。通过这样两次动手操作的过程,学生充分理解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。
3.鼓励发现,探索分数与除法的关系。
探索是学生亲自经历和体验的学习过程,引导学生观察1÷3=1/3?? 3÷4=3/4这两道算式,鼓励他们想一想:①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?②用分数表示商时,除式里的被除数,除数分别是分数里的什么?③分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。
二、改进之处
1.分数与除法的区别没有理解透彻。
虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有学生自己总结出来,剩下的时间比较仓促,只能由我帮助引导学生总结出两者的区别,即:除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。这部分内容下一节课应予以强调。
2.小组操作参差不齐。
在小组合作进行把3块饼平均分给4个人时,有的小组合作的效果较好,但有的小组并没有领会3/4块是怎么得到的,3个1/4块是3/4块,3块的1/4是3/4块,分数的这两种意义个别学生没有理解透彻。
针对本课的不足之处,下一节课将进一步弥补,期待学生将分数与除法的联系和区别掌握牢固。
分数除法教学反思7
首先通过课前谈话解决了分数除法的意义。接下去重点来研究分数除以整数的计算方法,我出示了这样一道例题:布艺兴趣小组的同学要用米的花布给小猴做衣服。如果做背心,可以做3件,你能提出什么问题?学生们一致的提出了“做一件背心需要花布多少米?”的问题。问题一出,学生马上就把算式列出来了,÷3,可是这个算式应该怎么计算呢?通过四人小组讨论合作,最终想出了好几种方法。
法1:÷3=0.9÷3=0.3(米)(把分数化作小数,然后再计算)
法2:÷3=(×)÷(3×)=(米)(运用分数的基本性质)
法3:÷3=×=(米)(因为把整块布看作一个整体,平均分成三份,其中的一份就占了整块的,所以直接乘以)
法4:÷3==(米)(把分子平均分成3分,分母不变)
把三种方法整理出来后,他们感觉不出来哪种方法简便。于是我接着把改为,让他们再用自己发现的方法进行计算。结果学生们发现用方法1时,化成小数时除不尽;用方法2太麻烦;用方法4时,11除以3,除不尽;还是用方法3最简便。
随后,我让他们观察、讨论、交流÷3=×=(米)与÷3=×=(米)这两道题的计算方法,学生们发现除以整数等于乘以整数的倒数。
第二环节解决一个数除以分数的计算方法。
我把例题改为:布艺兴趣小组的同学要用米的.花布给小猴做衣服,每件衣服要用米,能给几只小猴子做衣服?有了第一题的基础,大部分学生马上就想到÷=×=3(只),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你把改为的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把米换成1米,你认为又该怎么计算呢?学生们说还是乘以后面的数的倒数。
最后总结:同学们,从这几题中你发现了什么?——分数除法的计算方法学生们脱口而出。
第三环节,做一些练习。
在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,记得牢固,教师教的快乐,教的放心。
分数除法教学反思8
分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。
在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。
其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的'学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。我让学生亲自动手分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。
本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。
在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。
分数除法教学反思9
分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的基础上进行教学的。
成功之处:
沟通分数乘除法解决问题,加强知识的'横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:
总数÷份数=每份数总数÷每份数=份数
路程÷时间=速度路程÷速度=时间
总价÷数量=单价总价÷单价=数量
在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?
在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。
不足之处:
1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。
2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。
改进之处:
1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。
2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。
分数除法教学反思10
教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出前准备好的.三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。
二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!
分数除法教学反思11
1、在对教材内容准确把握的基础上,注重以“人的发展为本”,灵活使用教材,积极为学生创设主动学习的情境,使学生自我感受数学、体验数学、实践数学,从而激发学习和探究教学的热情。
2、在教学中,给学生充分提供表现、操作、研究、创造的空间,相信所有的学生都能学习,都会学习,学生的潜能就会像空气一样,放在多大的空间里,它就会有多大,使每个学生的潜能发挥出来,使他们能充分享受学习成功的乐趣。
3、在教学中,注重学生自己的思维过程,而不能仅仅提供前人的思维结果。创设开放的教学情景,营造积极的思维状态和宽松的思维气氛,肯定学生的'“标新立异”、“异想天开”,努力保护学生的好奇心、求知欲和想象力,进而激发学生的创新热情,形成学生的创新意识,培养学生的创新精神,训练学生的思维能力。
4、要让学生经历自主探究的过程。探究是感悟的基础。没有探究就没有深刻的感悟。教学中,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟。
不足之处
1、对单位“1”的理解在课堂上渗透还得加深理解。
2、巩固练习不够趣味性,缺少层次性。在巩固练习的教学过程中,为了增加练习的趣味性,应多安排一些数学游戏,以此来调动学生学习的积极性,使得学生在娱乐中巩固和深化所学知识,达到了寓教于乐的目的。
3.多交流。给学生一定的时间去画一画线段图(其实这是有助于学生理解题意的)。
4、给学生独立思维的空间。
分数除法教学反思12
《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商, 在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的'任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
分数除法教学反思13
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的`数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
分数除法教学反思14
《分数与除法》教学反思
本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把4个饼平均分给四人,每人可以分得几块?再把三个饼平均分给四人,每人分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的'必要性,另一方面可以感受数学来源于生活,又应用于生活。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
分数除法教学反思15
《分数除法》第一课时包含了两方面的内容:分数除法的意义和分数除以整数。本课时是在学习了倒数的基础上开展教学,所以学生已经理解了倒数的意义。实验教材与老教材比较,对于分数除法的意义教学有所弱化,不再要求学生讲清楚每道分数除法的意义,而是改为利用除法算式改写出乘法算式,相对来说,降低了本节课的难度,更加贴合学生实际情况。根据以上情况,本节课把重点定在理解分数除以整数的算理和计算方法上,其中,理解算理是本节课的难点。
教学本节课时,我首先出示4/52,直奔主题。利用例题,让学生进行探究学习。让他们先说说解题设想,包括折一折、画一画、算一算等方式。出乎我意料的是学生经过思考后,争先恐后地说出了多种解答方法。虽然有些方法都是不恰当的,但是学生积极主动的.思考,使我感到最高兴的事。有些学生的每种算法把算理都解释得非常清楚。然后引导然后学生说说3份或其他几份怎么算。计算:4/53。最后引导归纳出:把一个数平均分成几份,求其中一份,就是求这个数的几分之一。
《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。
在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。
同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。
【分数除法教学反思】相关文章:
《分数除法》教学反思02-15
《分数与除法》教学反思02-17
分数与除法教学反思02-06
分数除法的教学反思02-10
分数除法教学反思03-11
《分数除法三》教学反思04-07
《分数与除法的关系》教学反思03-12
《分数除法三》的教学反思03-05
分数除法二教学反思03-02
小学《分数与除法》数学教学反思04-07