约分教学反思
作为一名人民老师,课堂教学是我们的任务之一,对教学中的新发现可以写在教学反思中,快来参考教学反思是怎么写的吧!以下是小编为大家整理的约分教学反思,仅供参考,欢迎大家阅读。
约分教学反思1
《约分》这节课主要是让学生理解约分及最简分数的意义,掌握约分方法,能准确判断约分的结果是不是最简分数是教学难点。在设计中,我首先充分考虑到学生已有的知识基础——分数基本性质和最大公因数的求法。本课无需在此处多费时间,合理的知识迁移,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。其次补充2、5、3的倍数练习。为学生熟练掌握约分方法做准备。
对学生来说,掌握约分的方法并不难,要熟练进行约分,关键在于能够很快看出分子、分母是否含有公因数2、5、3等。而且判断约分的结果是不是最简分数,即判断分子、分母是否只有公因数1,如果只有公因数1,那么这个分数是最简分数如果分子、分母是否含有大于1的公因数,这个分数不是最简分数。因此,在教学中适当补充一些判别2、5、3的倍数练习,为学生学习约分提供必要的扎实基础。
在教学中我通过让学生比较60/100与3/5比大小,引出了最简分数的概念。在此基础上,我以引导与点拨为主的方式进行,让全体学生通过观察、探究、展示、交流、小结等活动,一步一步地从化简分数的具体过程中抽象出约分的概念。在讨论约分的'方法时,学生在探究学习中相互交流了自己的想法和作法。鼓励方法的多样性:可以逐步约分,也可以直接用最大公因数约分,然后再学习中自主选择最优的方法。在练习中,多问学生“为什么”,多让学生自己说想法,从而理解约分的方法和重点。这样学生掌握的更加牢固。
约分的知识实际上学生在理解上并不是太难的内容,但在实际运用中却掌握的不理想。我个人觉得这主要还是与学生综合运用知识的能力较弱有很大的关系。约分的知识涉及到求两个数的公因数、最大公因数以及分数的基本性质等相关知识。学生要对每个部分的知识掌握的很扎实后,将这些知识进行综合的运用,才能很好的掌握约分的方法。在课堂教学时,我觉得学生在我的引导下基本上是能够理解约分的含义和掌握一般的方法,主要的问题还是出在约不完全。部分学生找公因数的速度较慢,找不全,不能正确判断出两个数的最大公因数等,都是学生约分不好的主要原因。我觉得只有通过反复的练习和纠正才能逐步提高学生约分的能力。
约分教学反思2
我昨天讲授了《约分》,孩子们掌握得不是很理想,讲完从头脑的接收,到理解消化,需要一个过程。在讲授约分概念的时候,学生对把一个分数的分子和分母同 时除以公因数,分数的值不变,这个过程叫约分等数学专业字眼不是很理解,于是我就举例,语文课上,你们学会缩写句子吗?学生异口同声回答学过。在 数学上,约分就好比一个缩写句子的过程,去掉修饰,剩下的主干再不能缩了,就叫最简分数。再比如,你们吃过花生吗?是不是先剥去外壳,然后再搓去红皮,最 后剩下白仁,还能再剥吗?这就相当于最简分数。明白吗?这时,孩子们才若有所思地点点头,从脸上表情中看出刚才的困惑释放了不少,我才稍稍放下心来。
在随后的练习中,我巡视发现有近三分之一的.学生约分不能到最简分数,只是除以其中一两个公因数而已。针对以上情况,我抛出一个问题最简分数分哪几种情 况?,学生各抒己见,最后我们共同总结出三种情况,一是分子和分母是相邻的关系,它们的公因数是1,是最简分数;二是分子和分子是不同的质数的情况下, 它们的公因数也是1,是最简分数;三是分子是一的分数,它们的公因数也是1,是最简分数。有了以上总结这三点,学生不仅节约了判断的时间,还有了检验是否 化到最简分数的标准,有效降低了出错率。
由今天的发现延伸到数学课堂,我发现数学课不能只是刻板地复制教材,而是教师要用自己对教材的理解,深入浅出地传授给学生。数学教师要用适合学生的教学方 法和教学语言,找到与学生的交融点,让学生真正地理解知识点。另外,数学问题随着教学的深入而发展,学生的思维也一直处于积极思考的状态,学生的潜能能得 到充分地挖掘,让课堂充满生命力。
一个充满智慧的教师,不仅要教给学生知识,更要教给学生方法,让他们学会学习。所以在本节课我抛出问题后,不急着给出答案,先让学生思考,总结什么样的分 数属于最简分数,然后教师再去总结,归纳。这让我不禁想起一位教育家的话:给孩子一些权利,让他自己去选择,给孩子一些机会,让他自己去体验,给孩子一 些困难,让他自己去尝试,给孩子一个问题,让他自己去解决,给孩子一片天空,让他自己去发挥。这种理念不断指引着自己的方向,体验于数学课中。
约分教学反思3
本节课主要是让学生理解约分和最简分数的意义,掌握约分的方法,难点在于判断约分后的分数是否是最简分数,事实证明学生在实际运用时的确掌握不够理想。经过反思,这节课值得关注以下几个方面:
反思自己在课堂教学时,只是通过举几个简单的例子来让学生理解最简分数,让学生自己发现最简分数的特别之处是不能再缩小了,然后让学生自己说几个最简分数,不经意间加深对最简分数的理解,以及在这过程中感受到的成功的快乐感是接受式教学所无法企及的。
在这个约分的`过程中涉及到找公因数、最大公因数以及分数的基本性质等相关知识,要求,将这些知识进行综合的运用,才能很好的掌握约分的方法。学生出现约不完的情况实际上是因为他们找不到最大公因数,不能判断两个数是不是还有除了1以外的公因数,是不是互质。只有当学生能很快找到最大公因数,约分就变得简单快捷。因此,在教学中适当补充一些判别2、5、3的倍数练习,为学生学习约分提供必要的扎实基础。
强调一定要找准公因数,并且化到最简分数。而学生一下子要发现最简分数的特征,是比较困难的,教师要做的就是给他们足够的时间和空间,让学生积极参与数学学习活动,促使他们的思维处于积极的良好状态,在合作中共同探究学习。
约分教学反思4
在《约分》这节课中,我是这样做的:
1、为学生提供充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,教师始终立足于培养学生的学习能力、教会学生学习方法,相信学生的潜能,通过小组活动,引发学生思考,引导学生观察、理解约分的含义,为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。可以说整个学习过程中,学生是学习的主体,教学的重点和难点都是在学生的发现、探究、讨论中解决,课堂处处闪动着学生智慧的'光芒。
2、教师关键处的点拨和发人深省的提问充分体现了教学主导的作用,既引导学生的发现,又不限制学生的思路;既能放开手充分培养学生的发散思维,又能在发散思维之后,求同存异,提升学生的认识,使课堂充满生机,启发引导无痕迹。
3、练习的设计体现了清晰的层次性,尤其是最后游戏的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜的认识。
约分教学反思5
本节课在教学是我采用“预学---交流---拓展”自主课堂教学模式。课后我积极反思感到本节课有以下几点做得比较好:
一、预学题设计突出学法指导、自主性、合作性。
本节课的预学题为:
1、读一读:自读课本84-85页的内容,把你认为重点的句子画出来。
2、想一想:3/4和75/100是一回事吗?为什么?
3、说一说:的分子和分母有什么特点?
4、做一做:试着完成例4,用自己认为最简单的方法将进行约分。
5、议一议:组内互相说说什么是约分,怎样约分最简便?
【设计意图】让学生通过自读、自学理解约分的含义及方法使学生的自学能力有所提升,通过小组交流培养学生的合作意识及归纳能力。
这样的设计打破了概念教学教师一味讲解的模式,层层深入,激活了学生的思维,调动了学生学习的主动性和积极性,学生有足够的空间和时间去领略数学的魅力,从而成为学习的主人。
二、课堂提问到位简练。
老师说的不多,但每一个问题都突出重点。在指导约分时,先是问了为什它们能用等号连接?帮学生回顾约分的`做法依据,又问拿谁去约分?突出做法是要寻找分子分母公因数,然后问还能继续约吗?怎么判断是最简分数,引出最简分数的概念和判断标准,使学生明确一定要用分子分母的最大公因数去除才可以约成最简分数。
存在问题:
1、个别学生不理解最简分数的含义
2、部分学生在约分不能一次性约成最简分数。
改进方法:
1、对互质数的知识进行讲解,并练习判断互质数。以加深学生对最简分数含义的理解。
2、对于求最大公因数的题目多练习,为学生进行约分做好铺垫,使学生能一次直接将分数约分成最简分数。
约分教学反思6
我先出示几组数:18和15、6和9、12和18、14和42 、42和50,让学生找出每组数的最大公约数。一边学生说,一边我把最大公约数记录在每组数的上方。完成后,我让学生把每组的两个数分别除以它们的最大公约数,接着让学生观察所得的'两个数有什么关系。当学生发现它们最大公因数只有1时,我接着问,你能用着两个数分别作分子、分母,然后得到一个分数吗?这些分数有什么共同的特征呢?你能给这样的分数取个名字吗?学生取了“最简分数”、“简单分数”等名称后我给出了正规的名称“最简分数”(让学生给分数取名字并不是为了追求课堂的虚假“繁荣”,而是通过这一过程加深学生对最简分数的本质属性的认识)。接着教师引导学生观察上面8个最简分数,他们自然地认识到最简分数既可以是真分数,也可以是假分数,这样更进一步地丰富了学生对最简分数外延的认识。那么,一个不是最简分数的分数能不能化成最简分数?如果能,又怎样把它化成最简分数呢?接着就转入约分环节的教学。
以上的教学设计,除了找两个数的最大公约数是预设,其它的都是随机生成成而得,然而就是这样的灵活调整,令我这堂课生机盎然,教学线条流畅自然。
约分教学反思7
教学目标
1.使学生认识约分和最简分数的意义,理解和掌握约分的方法。
2.培养学生的观察、比较和归纳等思维能力。
教学重点
掌握约分的方法。
教学难点
很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
教学准备
1.多媒体课件。 2.作业纸。
3.分数卡片、信封袋。 4.记号笔、白纸。
板书设计
约分
例1:把化简。例2:把约分。 ==板书约分的两种形式==板书分母是9的==所有最简真分数。
教学过程教师边导边教
学生边学边练
评析
一、情境导入,复习巩固,激发兴趣。
1.引发学生学习兴趣,和孙悟空比本领。 2.指出下面每组数中的公约数(1除外)。 42和50、15和5、8和21、18和12 3.在括号里填上适当的数。选择第三道题问:你是怎么想的?= = ==利用该知识,把分数化成同它相等的另一个分数。
快速口答
突出回答8和21只有公约数1,所以8和21是互质数。
利用分数的基本性质,达到回顾知识的效果。
有简洁的导入:孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知道孙悟空有72变,特神奇,你们想不想也学一招?好,这节课我们就来创造第73变,变分数!”来激发学生学习新知识的激情。
二、理解最简分数及约分的意义。
1.尝试“变”分数。例1:把化简。活动要求:
(1)这个分数要和大小相等。
(2)这个分数的分子、分母要比的分子、分母小。 2.了解约分的概念。
(1)观察所变出的分数与有什么关系?
(2)像这样,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。举例:把化成就是约分。
要求学生变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。
与四人小组内的同学说一说变的分数是怎样得来的。
观察后发现分数大小相等,但分子、分母都比原来分数的分子、分母小。
学生找还有哪些过程也是约分。
有明确的学生自学内容:在提出了学生变分数的小组合作的要求后,老师参与其中,予以适当的点拨,让学生明确活动的要求,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,相互提点,发现约分的实际概念。
有精要的重难点讲解:让学生在老师例举中找到约分的概念,尝试着进行概括,并从观察的分子、分母能否再变小,提出了最简分数的概念,通过举例、练习达到巩固的效果,这样本课的重、难点就迎刃而解了。
3.认识最简分数。
(1)观察的分子、分母能否再变小了?为什么?
(2)像这样分子、分母是互质数的分数,叫做最简分数。(3)找出最简分数练习。
分子、分母为互质数。
举例说出几个最简分数。
强化最简分数的概念.
有及时有效的学习反馈:及时对学生已掌握的知识点进行检测,通过不同类型的习题,让学生在比较中进行小结,概括适当的方法。
三、自主探索,合作交流,总结方法。
1.你能根据我们化简的过程找到约分的方法吗?打开书p100,看看书上是如何说的?
2.自主探索约分的形式。把一个分数进行约分?教师板书约分时一般采用的两种形式。 a、逐次约分法。 b、一次约分法。
如果能很快看出18和42的最大公约数,也可直接用6去除,一次约分得。
3.小结:我们既可以用它们分子、分母的公约数去除,一步一步来约分;也可以用最大公约数去除,直接约分。
四人小组讨论发现约分的方法是什么?(用分子和分母的公约数同时去除分数的分子和分母。)注意到约分的方法中关键的地方。尝试练习。例2:把约分。
学生边汇报教师边板书过程。
在书写的时候,提醒大家注意各个数位对齐。最后都要约成最简分数。
选择自己喜欢的方式对下面各分数进行约分。写在作业纸上。(视频展示)
有恰当的学生自学引导:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。
四、巩固练习。
和悟空打擂台。 1.判断:
2.说出分母是4的.所有最简真分数。 3.
4.用最简分数表示出小明每一项内容占一天总时间的几分之几?之后看表提问题。 5.每人从信封袋中挑选一个自己最喜欢的分数卡片。(1)最简分数上台。
和最简分数相同的分数起立。
(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。
判断并说明理由。
写出分母是9的所有最简真分数。
先判断哪些分数是最简分数,把不是最简分数的分数进行约分。
上学8小时睡眠10小时劳动1小时
做家庭作业2小时(含课外阅读时间)餐饮休闲3小时
按要求参加活动,综合考核学生判断最简分数和对分数进行约分的能力。(用记号笔现场写)
有实效的对重、难点的检测和练习:创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。题目充满趣味性。在引导学生积极观察、思考、联想、诱发学生的创新因素时,应注意引导学生克服固定的思维模式,鼓励独创性地发现知识的规律和发表自己的独特见解。
五、总结提升
现在我们来回顾一下,今天这节课你有什么收获?
了解了什么是约分、最简分数、怎样约分
有简要的课堂小结:及时对本课的学习进行小结和梳理,加深学习的印象。课后延伸
寻找相关的练习进行训练。
通过学生的自主学习牢固的掌握知识。总评:
新课标指出,提供给学生的学习内容必须是现实的,有意义的,富有挑战性的。教师要全面了解学生的学习状况,创设有利于学生学习的情境,更好地激发学生的学习热情,营造一种能促进学生主动发展的课堂气氛,让学生在正确评价中,得到肯定,增强信心,提高学习兴趣,使自己在各方面都不断进步。本课即选取了孙悟空这一形象贯穿全课,让学生与孙悟空比试、学习72变、打擂台等,很容易把学生吸引到课堂上来。
让学生多种感官协同参与活动,眼口手脑密切配合,为学生提供观察演示练习的机会,真正把学生推到主体地位。在理解约分的意义后,继续通过用眼观察、动脑思考、动手操作、口头表达自然形成最简分数的概念。概括地总结本课内容是学生参与学习程度的集中体现,也有利于培养学生抓住重点精练概括的能力。
之后,又提供一定数量针对性强、难易适度、联系生活实际的练习,既帮助学生理解掌握知识,又促进学生发展能力形成技能,还结合练习有机进行学习习惯的教育。
只要照着新课标进行教学,势必对学生的将来产生积极影响,让学生不管在什么时候,都能很自信地说出:“我能行”!
约分教学反思8
约分是分数基本性质的直接应用。为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。
“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的`写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,
终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。
约分教学反思9
1、本课能创设生动有趣的情趣,调动学生的学习积极性,使学生乐学、好学,较好地培养学生对数学学习的情感。
2、在设计中,充分考虑到学生已有的知识基础——分数基本性质和最大公因数的求法。本课无需在此处多费时间,合理的知识迁移,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。
3、为学生提供充分探究和发现的'时间与空间,从约分含义的理解到约分方法的学习。
终立足于培养学生的学习能力、教会学生学习方法的基础上,相信学生的潜能,通过第一组活动,引发学生思考,发现几个分子分母不同的分数相同;借助第二组活动引导学生观察、理解约分的含义;创设第三组活动,为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。可以说整个学习过程中,学生是学习的主体,教学的重点和难点都是在学生的发现、探究、讨论中解决,课堂处处闪动着学生智慧的光芒。
4、教师关键处的点拨和发人深省的提问充分体现了教学主导的作用,既引导学生的发现,又不限制学生的思路;既能放开手充分培养学生的发散思维,又能在发散思维之后,求同存异,提升学生的认识,使课堂充满生机,启发引导无痕迹。
5、练习的设计体现了清晰的层次性,尤其是最后游戏的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜,不呆板的认识。
约分教学反思10
本节课,我还是采用四段的教学方法。第一步是新课前的复习,第二步是教学新课,第三步是巩固练习,第四步知识整理拓展训练。
教学前为学生提供充分探究和发现的时间与空间。分数的基本性质,从约分含义的理解到约分方法的学习,教师始终立足于培养学生的学习能力、教会学生学习方法的基础上,相信学生的'潜能,通过第一组活动,引发学生思考,发现几个分子分母不同的分数相同;借助第二组活动引导学生观察、理解约分的含义;创设第三组活动,为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。可以说整个学习过程中,学生是学习的主体,教学的重点和难点都是在学生的发现、探究、讨论中解决,课堂处处闪动着学生智慧的光芒。
教学中教师关键处的点拨和发人深省的提问充分体现了教学主导的作用,既引导学生的发现,又不限制学生的思路;既能放开手充分培养学生的发散思维,又能在发散思维之后,求同存异,提升学生的认识,使课堂充满生机,启发引导无痕迹。
练习的设计体现了清晰的层次性,尤其是最后游戏的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜,不呆板的认识。
觉得我的失误是在开始预设时,在教学时过早地引入一次约分的方法,这个方法没有让学生自己通过大量的分步约分的练习来体会来比较。由于有的学生对两个数的最大公因数一次很难找准,给一次约分造成困难。我觉得以后再上此课时,要注意。
约分教学反思11
《约分》这节课给了我很多的思考,在备课时,我查阅了一些关于《约分》的资料,同时我们年级也正在搞“分层教学”,于是我就以此为载体来实施分层,现在处于分层的初始阶段,一点经验也没有,只是在尝试摸索,只是在查阅学习,学习时看到的,和正在能够在课堂上实现的,真的有太大的距离,有些方法、程序说起来容易,做起来不太容易,这就是理论与实践还没有有机的融合。
这节课我从这么几个方面体现分层:小组讨论环节、展示环节、达标检测环节。小组讨论时,拓展组快速讨论形成一致意见后,立刻去对子组补充组和展示组进行帮扶,完成任务的学生进行拓展学习,为展示做准备。这个过程能够让每个小组的成员都能得到发展,展示组和补充组的同学在对子组同学的帮扶下解决了知识上的盲点,拓展组的同学在指导对子组同学的同时获得了很大的自信和成就感,并且还能提升自己的授课能力,因为要想去帮扶别人,必须得自己的功夫硬才行,所以他们就会更加的'努力,其他的同学在进行拓展学习的过程中,能够学到很多课本上学不到的相关知识,丰富了自己的认知基础,。展示环节,就会更加刚才讨论时学生学习时的理解和掌握进行展示、补充、拓展。通过同学们的展示,他们又能够听到一些更深层次的东西,扩大了学生的知识面。达标检测,分必做题和选做题。所有学生首先做必做题,每组最先做完的老师批阅,然后再批阅其他组员的,必做题全对的再做选做题,首先做完的再一次循环批阅。总之在每个层次的同学都有不同程度的发展。
备这节课花费了一些时间,在这个过程中思路不断的变化,预设的问题也越来越多,于是就不断的调整上课的思路,整个过程确实带给了我很多的思考,更加深入的理解这节课,更加深入的预设学生出现的状况,也让我对教材有了更深的把握。上午这节课我也有很多的感触,有欣慰也有遗憾。学生展示时的表现我感觉很欣慰,学生互相补充的内容很丰富,知识面没有仅仅限于数学课本,而是站在拓展提高的角度,让学生能更好的接受和理解这些知识,特别是反思悟学环节,学生说的非常棒,要不是时间紧张,我还真舍不得让他们停下,从他们反思的内容我看到了学生课堂上的成长,不仅能够梳理自己的知识收获,还能够从学习方法、情感态度等方面进行思考,让我深深的感觉到,学生确实长大了。这节课上也有很多的遗憾,课堂上小白板练习的过程中几乎所有的学生都能把分数约成最简分数,但是学生在最后的达标检测环节,有的学生却没有把分数约到最简。反思这个问题,第一,这些孩子还没有完全理解最简分数的定义,这个知识掌握的不扎实,方法、策略准对性还不够强;第二,在学习这节课之前的那些单元,所做过的所有题目都没有要求学生把结果化到最简,再加上题目的类型差不多,学生处于思维定式,没有仔细看题目就写上了结果。我忽然想起了办公室的张小燕老师说,她一开始就要求孩子把结果写到最简,防止以后计算结果不写最简,张老师太智慧了。我忽然有个想法,学完了分数的基本性质,应该接着学习最简分数,这样的话,学生掌握的可能会更好,也更容易理解,约分最终是要约成最简分数,但是只要分子分母除以公因数都是约分,所以我个人认为最简分数的学习前置会更好。
这节课也有幸得到了中央教科所专家的指导,与高端对话,真是获益良多,我会努力的反思自己,也会继续努力学习,好好修炼自己的专业素质,用才艺让自己的课堂生动活泼,提高技艺使自己的课堂更严谨高效,向才艺和技艺结合的目标迈进。
约分教学反思12
反思《约分》这节课,我觉得我对这节课不够重视,以为学过分数的基本性质和公因数,在教学时出示一个例子引导学生完成,使学生浅显的知道什么约分,让学生把什么是最简分数读了两遍,就让学生开始练习了。没有让学生亲历探索的过程。故而,在后面的练习中,很多学生找分数的分子和分母的公因数以及最大公因数的速度特别慢,还有的同学约分的结果不是最简分数。本以为相当简单的问题,可是我又用两节课时间去巩固练习,效果还是不太好。因此在计算分数加减法时暴露出来的问题就更严重了。
学生要理解掌握概念,必须要参与、经历知识的探索过程。向其他老师请教后,我再次思考了《约分》这节课的教法,特别是最简分数概念的揭示。
约分是分数基本性质的直接应用,为了使学生对最简分数的概念有充分的感知基础,可以写几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。
“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生找出其中最简的那个分数最特殊,并说说特殊的原因:因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,越来越归纳,越来越接近实质……说着说着,终于学生自己就会发现:只要分子分母的公因数只有1,这个分数就是最简分数!
无疑,让学生在看似不经意的'写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
看来许多理念对于我还是书本上的,我应该有意识的改一改自己身上一些与理念不适应的教学行为——哪怕这些行为以前是“负责任”的标志。在教学中引导学生参与到探索知识的发生发展过程之中,突破以往数学学习单一,被动的方式,关注学生的实践活动,“通过自己的活动”获得情感、能力、智力的全面发展。
约分教学反思13
约分是分数基本性质的直接应用.为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的'分数,通过学生写分数、说理由自然地复习了分数的基本性质。
“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!
无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
约分教学反思14
约分的学习比较难,主要因为学习需要首先掌握公因数、最大公因数、分数的基本性质,学习好约分之后也能为之后的分数加减法的结果处理打好基础。所以在本课程的学习中,我把重点放在了先期知识的复习与巩固,所以在课程的开始先从小游戏涂卡片,就是让学生给圆形卡片涂色,一分钟看能涂多少,最先完成的同学上台分享作品并告诉大家涂色部分占圆形的比例,并解释为什么,这氧复习了分数的基本性质之后,在开始约分的学习。
约分的.学习先从定义来看“把一个分数的分子和分母同时除以公因数,分数的值不变,这个过程叫约分”,这个定义同学难以理解,单纯的数字与定义过于抽象,我决定从生活出发,告诉学生约分就是把分子分母共同拥有的公因数去掉的过程,去掉公因数分数的值是不变的练习题,我发现少部分同学能约分到最简分数,但是大部分同学还会保留一两个公因数,怎么样能判断我们约分已经约到最简分数了呢?大家想想,可以互相讨论以下。陆陆续续大家也都发现了,那就是分子分母公因数只剩下1的时候就是最简分数了。比如分子是1或者分子分母相邻数等等。
在教学中利用好深度学习的方法,结合生活,找到与学生的融汇点,顺利切入主题,再让学生自己发掘知识,活跃课堂气氛。
约分教学反思15
本节课我没有完全照搬课本上的例题1,而是利用例题1从18/24入手,让学生根据分数的基本性质,找出几个与它们大小相等的分数。学生通过写分数、说理由自然地复习了分数的基本性质。使学生在解决问题中自然而然地进入探究新知的状态。然后板书36/48=18/24=9/12=3/4,通过“比较这些相等分数的相同点和不同点”,分数的分子和分母的数字都变小了,是因为分数的分子和分母同时除以了相同的数,即分子和分母的公因数,从而引出约分的概念。“36/48约分成3/4后还能继续再约分吗?为什么?”引导学生总结归纳出“分子和分母是互质数的'分数,叫做最简分数” “你能举出几个最简分数吗?”引导学生不断地说,真正理解什么是最简分数。之后是学习例题2约分的书写格式及约分的方法。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。学生们基本上都对一次约分的方法感兴趣,但一次约分的要求更高,就是要一眼找出分子分母的最大公因数。
通过一系列递进式的探索活动,我让学生自己通过体验归纳总结,举例验证,由内到外的理解概念的意义,打破了概念教学教师一味讲解的模式,层层深入,激活了学生的思维,调动了学生学习的主动性和积极性,学生有足够的空间和时间去领略数学的魅力,从而成为学习的主人。
【约分教学反思】相关文章:
《约分》教学反思06-07
《约分》教学反思(15篇)04-02
约分教学反思15篇04-01
约分教学反思(15篇)04-01
《约分》教学反思15篇04-02
约分教案教学设计04-07
约分优秀教案08-26
《约分》优秀说课稿范文02-08
约分优秀教案3篇09-12