当前位置:育文网>教学文档>教学反思> 《解方程》教学反思

《解方程》教学反思

时间:2024-09-09 10:14:09 教学反思 我要投稿

《解方程》教学反思

  身为一名到岗不久的人民教师,教学是我们的任务之一,在写教学反思的时候可以反思自己的教学失误,优秀的教学反思都具备一些什么特点呢?以下是小编帮大家整理的《解方程》教学反思 ,仅供参考,希望能够帮助到大家。

《解方程》教学反思

《解方程》教学反思 1

  本节主要教学目标是使学生通过结合具体实际问题的分析与解决,导出形如ax±b=c和ax±bx=c形式的方程,并结合原有旧知——等式的性质推导出解法步骤,同时利用这些方程来解决一些实际问题,丰富学生的解题方法,提高学生解决问题的能力。

  通过几课时的教学与练习,学生在掌握方程解法上没有问题,说明学生对等式的性质掌握的比较扎实。但在运用方程解决一些实际问题时,部分学生表现出缺少一定的分析习惯和缺乏一定的分析能力,造成在解决问题(特别是一些例题的变式题)时产生较多错误。

  通过前后练习的比较、观察,发现产生上述问题的主要原因在于学生在练习时偏重模仿和记忆,缺少具体分析的意识。从而造成在碰到一些变式题时就明显缺少解题策略,学生在读题后首先想到的不是去思考题中有怎样的数量关系,而是在记忆中极力搜索“这个问题以前有没有讲过?或跟哪个问题是一样的?”等旧痕迹。然而这些变式题的解答难就难在它与例题有密切的联系,但又有区别。如果学生不能找到其中的区别和练习,光靠模仿和记忆,那就很难正确解答了。因此,在教学中教师要注意学生重模仿轻分析的学习方式,在练习中要加强数量关系的分析,注重学生对解题思路的表述。教师要强调学生读题后先分析并写出等量关系,每个实际问题的解答过程中都要设计等量关系的分析与交流,从潜意识中使学生重视起对问题的分析与判断。一开始学生可能在分析、判断等量关系时还会模仿例题的形式,因此在学生对基本类型有了一定的感悟后,要有针对性的出现变式题让学生来解决,使其在认知冲突中进一步感悟先分析、判断等量关系的重要性。但同时教师也要十分清楚的认识到寻找等量关系对于课改后的六年级学生来讲,并不是一件容易的事,除了缺少一定的意识外,更重要的是缺乏一定的分析能力。

  产生这种情况的原因主要有两个,一是在新教材的编排中,在六年级前很少涉及甚至没有安排过等量关系寻找的内容。正是由于教材中忽视了这方面内容的安排,也就引起了第二个原因——教师和学生都忽视了寻找等量关系能力的培养。等到六年级要大量具体涉及到时,就发现学生很不适应了。如何提高学生寻找题目中等量关系的能力,就成了教学的一个重点,也是一个难点。为了提高学生等量关系的分析能力,除了如前所述要加强意识培养外,还应在具体方法上加以指导。而用线段图来表示题目中的条件和问题,是一种非常有效的.提升学生分析、判断等量关系的方法,教材在例题分析中就先借助了线段图来分析,从而帮助学生找出题中的等量关系。在实际教学中我深深地体会到了画线段图来表示条件和问题,从而形象的表示出等量关系的有效性。同时,在教学中不能因为问题简单或赶进度而忽视画线段图表示条件和问题的环节。一开始学生可能由于以前缺少一定的训练而显得有些不适应,但经过几次的努力后,学生就能很快提高作图能力,从而有助于等量关系的寻找。

  综上所述,在列方程解决实际问题的教学中,教师首先要注意学生学习方式的培养,从偏重模仿和记忆中逐步纠正过来,逐步建立具体分析的意识。其次是要培养学生用线段图表示题目中条件和问题的能力,借助线段图的表示形象的表现出相关的等量关系,提高学生寻找等量关系的能力,从而进一步提高学生列方程解决实际问题的能力。

《解方程》教学反思 2

  1、教材的编排上难度下降。有意避开了,形如:7.8—X=2.6,12÷X=1.2等类型的题目。把用等式解决的方法单一化了,这和提倡算法多样化又有了矛盾。尽管老师一再强调用等式的性质解,还是有多数学生用原来的方法解答。

  2、强调书写格式得有层次。告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,如果有过程,方程中的等号不易上下对齐,这点问题不大。到熟练之后省去过程时再强调格式。

  3、内容看似少实际教得多。难度下降后,看起来教师要教的`内容变得少了,()可以实际上反而是多了。教师要给他们补充X在后面的方程的解法。要教他们列方程时怎么避免X在后面这样方程的出现等等。

  在实际教学中我们要求学生较熟练地利用等式的方法来解方程,用这样的方法来解方程之后,书本中不再出现X做减数,除数的方程题了,但学生在列方程解实际应用时,学生列出的方程中还有这样的题目,但不会解答,这时我们又要强调算法多样化,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。有的学生又不得不用除、减法各部分间的关系做题。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。因此教学中我还是对学生说尽量用方程的性质解,若遇到用等式的性质解决不了时,可以用以前学过的知识解答。认识方程教学反思解方程教学反思方程教学反思

《解方程》教学反思 3

  这次教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

  原来教学由于我个人比较偏好于传统的教学方法,在教学的.过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。

  尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。

  在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。

《解方程》教学反思 4

  本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的旧知识来解决,那你认为应该把这样的减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?

  通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的.过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。

《解方程》教学反思 5

  五年级上册利用等式的性质解方程一直困扰着老师们,因为类似a-x=b的方程,则比较麻烦,因此许多老师就避开等式的性质,转而用四则运算各部分之间的关系进行教学,这样以来势必会削弱学生对等式的性质的理解和掌握。我教学中是这样做的:第一节课时教学学习等式的性质和用等式的性质解方程,在书写上要求学生按这样的格式书写如:

  x+100=250

  解:x-100+100-100=250-100

  X=150

  强调我们解方程的根据是等式的性质,即把等式的两边同时减去100,等式左右两边仍然相等,通过练习使学生达到熟练程度。

  第二课时教学时,引入类似a-x=b的方程,例如10.5-x=7.5这样的方程,让学生讨论,这样的方程我们如何解呢?有的学生想到了运用减法各部分之间的关系来解方程,即除数等于被除数除以商,也有一部分同学运用等式的性质来解方程,先将方程的'左右两边同时加上x,,即10.5-x+x=7.5+x:方程变成了x+7.5=10.5,再把方程左右两边同时减去7.5,求出x的值;然后引导学生观察在运用等式的基本性质解方程时,方程左边加一个数又减一这个数,可以相互抵消,因此在书写时,可以省略不写,如:15+x=85,15+x-15=85-15,左边可以将加15和减15省略不写,学生很快学会了这种方法。最后引导学生把我们所学习的加减法方程的样式及解法可以归纳如下:

  x+a=b

  x=b-a(根据:把方程的左右两边同时减去a,等式仍然成立;

  或者是想:一个加数=和-另一个加数)

  x-a=b

  x=b+a(根据:把方程的左右两边同时加a,等式仍然成立;

  或者想:被减数=减数+差)

  a-x=b

  x=a-b(根据:把方程的左右两边同时加x,再把方程左右两边同时减去b等式仍然成立;或者想:减数=被减数-差)

  通过以上几个步骤的教学,我班学生对于用等式的基本性质解方程,或是运用加减法各部分间的关系解方程,都能运用自如,并能在后面学习了乘除法的方程后能够自觉进行整理,概括方程的样式和解方程的根据,收到了较好的教学效果。

《解方程》教学反思 6

  最近课堂上学习了《解方程》,是以等式的基本性质为基础来解决的。过去在小学教学简易方程,方程变形的依据是加减运算的关系或乘除运算的关系。这实际上是用算数的思路求未知数,但学生到了中学又要另起炉灶,引入等式的基本形式或方程的同解原理来学习解方程。现在,根据《标准(20xx)》的要求,从小学起就引起等式的基本性质,并以此为基础导出解方程的方法。新课程数学教学这样安排体现了“瞻前顾后”的道理,更加注重知识的迁移和联系,使得小学的知识要与初中的知识更加的接轨。

  教材中分为5个例题,分别是不同类型:x±a=b;

  ax=b;

  a-x=b;

  ax+b=c;

  a(x±b)=c,这几个类型层次依次递进,难度由简到难。其中例1不仅是教授x±a=b类型的解方程,还要让学生理解“方程的解”、“解方程”两个概念。刚开始时学生不易区分,但随着后面例题的讲解,并且在解方程的过程中,学生慢慢理解并内化能区分开这两个概念。

  通过几天对解方程的练习,大部分学生对解方程的目的以及检验的方法和步骤都有了较好的掌握,也能分清该利用哪个等式性质来解方程。但是在课堂练习和改作业时,发现部分学生还有一些问题存在:

  一、用方程来表示较复杂的数量关系学生出现困难,是通过我的.帮助列出方程,应及时让学生巩固方法。

  二、对于例3形式的解方程,学生还容易出错,如32-x=45,6÷x=3这样的方程,x前面是“-和÷”,学生不好理解为什么方程两边同时“+x”或同时“×x”,我又借助天平讲解:如果两边同时减32或同时除以6,依然算不出x,如果同时加x或同时×x,然后就能变成x+a=b或ax=b的形式,再利用所学方法进行解方程就可以了。这个类型还需要加强训练,让学生能快速区分开来是加数还是要加一个含有未知数的式子。

  三、解方程时学生丢步骤,如:2x+6=18这样的方程,学生都知道第一步要等式两边同时减去6,得到“2x=12”,但这一步有部分学生会直接写成“x=12”,说明还需强调2x是一个整体,第一步解完后并不是最后的解,还需让等式两边同时除以2才能得出。

  四、检验时学生的步骤丢三落四较多,或丢掉“=方程右边”;

  或丢掉最后一句话“x=2是方程的解”。

  《简易方程》这单元是本册的重点,解方程又是本单元的一大难点,所以后面的教学时,我除了让学生观察方程中未知数的位置和前面符号来解方程外,还应要求学生说得清,能讲清楚理由,从而在理解变形依据、过程的基础上掌握所学方程的解法。

《解方程》教学反思 7

  教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。

  一、从学生喜闻乐见的事物入手,降低问题的难度。

  解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育 1

  运动的良好情感,又为学习新知识做了很多的铺垫。

  二、放手让学生思考、解答,选择解题最佳方案。

  让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的`方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。

  三、教会学生学习方法,比教会知识更重要。

  应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生

  成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生 学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。

《解方程》教学反思 8

  本节课是在认识用字母表示数的基础上进行教学的,用天平保持平衡的原理解方程教学利,也就是我们常说的等式的基本性质解方程。

  教学中我先利用板书演示了天平两端同时加上或减去同样的.重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例 1 ,让学生列出方程 x+3=9 ,用课件演示 x+3 个方块 =9 个方块,提问: “ 如果要称出 x 有多块,怎么办? ” ,引导学生思考,只要将天平两端同时减去 3 个方块,天平仍平衡,得到一个 x 相当于 6 个方块,从而得到 x=6 。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案: x+3-3=9-3 ,于是我问:为什么方程两边要同时减去 3 ,而不减去其它数呢?学生沉默,有学生说, “ 为了得到一个 x 得多少 ” ,我又强调了一遍,我求一个 x 的多少,所以要把多余的 3 减去。接下来教学例 2 ,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成 3 分,得到每份是 6 的基础上,我用板演演示了分的过程,让学生把演示过程写出来,从而解出方程。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为 0 的数,方程两边仍然相等。

  按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练着大大出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:

  一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去 3 个方块,就相当于方程两边同时减去 3 ,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式;

  二是对为什么要减去 3 讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去 3 却还似懂非懂,如果当时举例说明也许很有效果,比如: x-3=6 ,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个 x 是多少,就要根据方程的具体情况,若比 x 多余的就要减去,不足 x 的就要补足,这样效果肯定好些。

《解方程》教学反思 9

  教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数,《解方程(二)》教学反思。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

  原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的.关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形,教学反思《《解方程(二)》教学反思》。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。

  尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。

  在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。

《解方程》教学反思 10

  本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。

  你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。另外我还要求学生掌握加、减、乘、除法各部分之间的.关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。

  在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。

《解方程》教学反思 11

  前两天讲解了简单的方程的解法,加法、减法乘法除法的,觉得孩子们接受的不错,一节课下来练习了好多题,每个孩子都能得心应手,自己还有点窃喜。可是今天却让我大跌眼镜。

  昨天上课讲解了例4和例5,孩子们对了复杂的方程有了初步认识,但在每一步的分析之下孩子们也觉得很熟悉,原来是简单的方程结合在一起变成复杂的,只要掌握运算顺序就不难,结合例题的图示,分彩笔的例子,先分什么再分什么,让学生明白在具体算式中也是结合着实物图来做,先把3x看做一个整体,把剩下的4根彩笔减掉,要想得到一整盒x根的彩笔,就得把3整盒再平均分配,这样下来孩子们能够明白每一步的意思,他们能够知道先处理多余的彩笔,再考虑整盒的彩笔。这样下来理解也不是问题,又练了几道同类的题,也很顺手。例5的.讲解上有些难度,孩子始终不太理解把括号看做一个整体,但在讲解和练习下也能做上了。

  今天我想验收一下昨天学的怎么样,结果让我很头疼,为什么过了一宿好多同学又没了思绪,留了6道题,少数几个好同学能够顺利的做上,大部分同学还在思索着,课下辅导了几个差生,原来他们又把前面学的简单的方程解法又忘了,自己思考了一下,得给孩子们消化时间,课上会了不代表他们一直不忘,还得多加练习啊

《解方程》教学反思 12

  教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的关系混乱容易出错,而初中的教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的关系讲解一遍。然后让学生根据自己实际情况灵活运用。

  可是跟设想的不一样,利用等式的'性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。

  1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。

  2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。

  所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。

《解方程》教学反思 13

  本节课的学生学习的重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;学习目标是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。

  一、从学生喜闻乐见的事物入手,降低问题的难度。

  解稍复杂的方程这部分内容烦琐乏味,解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的事物入手,引出数学问题,激发学生的'学习数学的兴趣,又为学习新知识做了很多的铺垫。

  二、放手让学生思考、解答,选择解题最佳方案。

  让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。

  三、教会学生学习方法,比教会知识更重要。

  应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色多少块,黑色多少块,白色比黑色少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法。

  让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。

《解方程》教学反思 14

  《解方程》是学生接触方程以来的第一堂计算课,理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。本着孩子比较感兴趣的基础上,本节课我采用的是课前预习,课上交流的形式进行,整节课大多数孩子在预习的基础上能够掌握方程的解法,但是个别孩子没有掌握。现反思如下:

  1、出示预习提纲,让孩子预习有根据。

  为让孩子形成自觉的学习习惯,师指导孩子进行预习,出示了以下三个问题:

  一是什么是方程的解?举例说明。

  二是什么是解方程?你是根据什么来解方程?

  三是如何进行方程的检验?

  好多孩子能够对这几个问题进行探究,并对意义理解比较深刻。

  2、课上交流。

  交流是学生思维火花的碰撞。对于什么是方程的解,孩子们举例子,根据例题来诠释方程的'解的意义。在进行交流根据什么来解方程的环节中,孩子们各抒已见,有的是用加法中各部分间的关系,有的是用等式的性质,还有的还接口答。依次把方法展示给大家,让孩子明白方程的解的意义和解方程的过程。再确定统一的解答方法,这个环节孩子兴趣很高,大部分孩子能够学会利用等式的性质进行解方程。整个的环节让孩子在探究中发现规律,找到方法,学生学的开心,对于概念的理解也很扎实。

《解方程》教学反思 15

  五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

  在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的.理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的组织者、引导者与合作者”的这一角度上,()为学生创设学着此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。

【《解方程》教学反思 】相关文章:

《解方程》的教学反思04-07

解方程教学反思02-05

解方程的教学反思03-10

《解方程二》教学反思04-07

数学解方程教学反思04-05

《解方程(二)》教学反思04-07

解方程二的教学反思02-05

《解方程》教学反思15篇04-07

《解方程》教学反思(15篇)04-07