《梯形的面积》教学反思
身为一位优秀的老师,我们的工作之一就是教学,对教学中的新发现可以写在教学反思中,如何把教学反思做到重点突出呢?下面是小编精心整理的《梯形的面积》教学反思,欢迎阅读与收藏。
《梯形的面积》教学反思1
1、还给学生主动权,教师需做导航灯。
数学教学要努力创造有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,给学生一个广阔的活动空间,当好学生学习的引导者、组织者与合作者。纵观两个案例,我们不难发现,案例1的教学仍是传统教学,教师设定了浅显直白的问题,学生无需经历“头脑风暴”,表面上都在积极参与,其实是被老师“牵着鼻子走”,没有创造性地学习。在这样的学习活动里,学生难以同步形成探究能力,更别说开阔发散思维了。案例2中的老师从讲台上走下来,真正把学习的主动权还给学生,真正做了学生学习的导航灯,充分调动学生学习的积极性,在思维方法、学习方式等学习要素上引领学生。
2、大胆尝试,自主探究,亲历知识的获取过程。
“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点。教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
3、强化实践,为学生搭建创新的舞台。
著名教育家皮亚杰说过:“孩子的`智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。
《梯形的面积》教学反思2
《梯形的面积》这一课教学的重、难点是:学生在自主探索活动中,经历推导梯形面积公式的过程。因此,在呈现实际情境,让学生感受到学习梯形面积计算方法的必要性后,我创设了一个学生自主探索梯形面积的'问题情境“老师准备不讲,看一看谁能用学过的知识,自己找出梯形的面积公式,你们能找到吗?”学生用10分钟左右的时间在小组中经过充分的讨论和研究,通过动手剪、拼、贴,达成一致后,把小组的研究成果写在黑板条贴在黑板上,进行展示,主要有六种方法:
①用两个完全相同的梯形拼凑成一个平行四边形。
②沿梯形的一条对角线剪开,把梯形分割成两个三角形。
③沿梯形的中位线剪开后,拼成一个平行四边形。
④在梯形的下底上找一点,把梯形分割成三个三角形。
⑤沿着梯形的上底的两个端点画出两条高,把梯形分割成一个长方形和两个三角形。
⑥沿梯形的中位线向下对折,再沿两腰中点向下作垂线,把两个三角形向内折就变成两个长方形。
在探索问题过程中得到启示,从中悟出真知〔S梯形=(a+b)h÷2〕。
这充分说明,教学过程中只要多给学生一些思考的空间和时间,放手让学生进行探索,学生的潜力是很大的。
《梯形的面积》教学反思3
梯形面积公式的推导教学是在平行四边形、三角形面积的计算基础上进行的。由于有前两种图形面积公式的推导过程的基础,我想如果今天的课堂上采用学生独立学习的方式来自主推导梯形面积计算公式,不会有太大的问题。
授课伊始引导学生回顾前两种图形面积的推导过程,为学生下一步独立学习做好准备。接着交代本节课的学习任务:研究梯形的面积的计算方法。这时我发给学生每组两张完全相同的两个梯形,让学生自己运用学习过的方法探讨研究梯形面积的计算方法。学生在探讨的'过程中我深入学生的各小组,观察学生的研究情况。学生没用五分钟已经将梯形面积的计算公式推导出来了,并能比较熟练地叙述出来。反思以上的教学,能够相信学生,给学生独立学习的机会,让学生在合作交流中,自主探究,体会学习的快乐,从而增强了学习自信心。同时学生的参与度高,积极性强,学生理解的更深入。
从另一个角度分析,教师对学生还是不能充分信任,教学前的铺设,实际上就是给学生搭好了桥,修好了路。给学生准备了两个完全一样的梯形,看似教师为学生着想,殊不知这样剥夺了学生尝试失败的权利。这样的设计能让我感到一丝丝的欣慰,毕竟我放手了,毕竟学生主动了,毕竟学生参与了。这种欣慰只是表层的愉悦,对学生来说,是不够的。有人说:教学是师生共享人类的崇高,这种崇高,对于知识来说,应当有更多的智慧活动,我这样想。
《梯形的面积》教学反思4
教学内容:
教科书88页和89页
教学目标:
(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力以及动手操作能力。
(3)进一步渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教具准备:多媒体课件
教学过程:
一、创设情境,引出问题
教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?
问:同学们这块地是什么图形啊?
生1:这是一个梯形。
问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?
生2:必须先知道梯形的面积。
师:今天我们这节课就来研究“梯形面积的计算”(板书)。
二、探究新知。
(1)、铺垫孕伏。
组织学生回忆平行四边形、三角形面积公式推导的方法及过程,
重点突出旋转、平移、割补的数学思想。
(2)、协作研讨,探求方法
1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。
师:谁能介绍一下这个梯形?
生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!
2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)
生4: (3+5)42=16(平方厘米)
生5: 542+342=16(平方厘米)
生6: (5+3)42=16(平方厘米)
生7: (5-3)42+34=16(平方厘米)
生8: (5+3)(42)=16(平方厘米)
生9: (3+5)24=16(平方厘米)
生10: 34+(5-3)42=16(平方厘米)
师生交流、点评……
3、总结规律,渗透数学思想方法
师:这些方法有什么共同的地方吗?
生11:结果都是16平方厘米。
生12:每种方法的计算过程中都用到3、4、5、2这几个数字。
师:这几个数字和梯形有什么关系吗?
生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:现在谁能猜一猜梯形的面积计算公式是怎样的?
生14:梯形的面积=(上底+下底)高2
师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?
生15:S=(a+b)h2
三、应用知识,解决问题
1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。
生16:(300+200)100210=2500(棵)
2、学生完成基础变式练习:“做一做”和练习十八的1~3题。
3、提高能力练习:共同探讨练习十八的第四题。
四、知识小结,体验学习的快乐!
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的.学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
《梯形的面积》教学反思5
您现在正在阅读的四年级数学《梯形的面积计算》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!四年级数学《梯形的面积计算》教学反思今天上了《梯形的面积计算》这节课,反思整堂课的教学,自我感觉较为满意的是,突出了以下几个方面:
一、体现了探究性教学的特点。
《数学课程标准》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本课的教学应该说较好地落实了这一理念:充分让学生动手实践用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。具体在教学中的体现如下:
放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。在这一环节中,学生出现了多种操作方法,如:一部分学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;一部分学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;还有一部分学生用一个梯形沿梯形的右上角到对腰的中点剪下,翻转180度,拼成一个三角形,推导出面积公式。这样的教学正好落实了《标准》提出的数学教学要在学生已有的知识背景下学习的理念。尤其突出的是充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了学生是学习的主人,教师是组织者、引导者和参与者。发展了学生的创新能力。值得指出的是:这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。经过课堂小结的点拨,使得这一教学效果尤其明显。
二、体现数学与生活的联系
首先,在导课时,创设了请学生帮老师计算电脑桌侧面梯形板的面积多少的问题情境,不仅有效提出了数学问题的,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的.问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上我依据学生的心理特点,做到了《标准》对于情景的创设要联系学生的生活实际的要求。在这一前提下让学生进行探究,是水到渠成,显示了学习的自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学来源于生活,回归于生活的思想。
三、体现练习的层次性
练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。
反思整个课堂教学过程,还是存在着许多问题:
一、小组合作的成效性不高。
这可以从课堂教学中的两个地方看出来:一是在学生进行独立探究时,学生基本上已经有了将梯形转化为平行四边形和长方形这两种转化方法,但是小组代表上来向全班交流时却只说了一种转化方法(另一种是另外的同学补充的)。难道他们组就这一种?还是他只说了自己的方法,而没有交流到本组其他同学的方法?第二点是在小组操作交流时,总有个别学生,自己玩自己的,不愿与人合作交流,可能是小组的分工不够明确,学生合作的欲望未被调动起来。这么看来,显然课堂上组织学生进行的小组合作交流的成效性是相当不理想的!那么如何进行改进呢?我想主要在课堂上教师还是应该进行更多地巡视,更多地参与到学生的学习中去!在学生思维停滞住时适时的加以点拨,鼓励所有学生参与讨论、参与探究。充分体现课堂上教师的主导作用。
二、缺少学生之间的互动。
《数学课程标准》明确指出,数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。这也符合交流应该多元化的现代教学观。说到这里,不由想起了许多名师的课,互动性强在他们的课堂上是多么地突出!反思本课的教学,就这方面来说还是存在明显不足的。课例中,在学生向全班汇报了转化过程及计算方法后,教师就说:老师请教你,为什么后面还要除以2呢?其实这里老师操之过急了,同时也是大可不必为之的。老师完全可以问学生:听了他的汇报演讲,你们有没有问题请教他?或者考考他呢?让学生来问这个问题,这样不但培养了学生提问题的能力与意识,给了学生一个发展思维水平的良机,而且很自然地形成了生生交流的良好的课堂学习氛围,多好!
三、放手的度不够
虽然本堂课的教学与以前传统教学方法在很大程度上有了改进。但还不够精彩的一个主要原因,我想是放得还不够。主要体现在:
小组合作操作、填写实验报告单时,报告单的设计最后一栏,若能不暗示,让学生自己去发现,课堂将更多生成的东西。会使整堂课更加的精彩。说到底,在教学理念上,我们接受了课程改革新思想的洗礼,有了很大的进步,但在实际教学中,却很难做到,总有这样那样的顾虑。因此,在课堂教学中如何放,放的度如何把握,这是我们将要继续探索的问题。
《梯形的面积》教学反思6
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的.实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
2、推导梯形的面积计算公式。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
《梯形的面积》教学反思7
教学时我首先让学生回忆平行四边形和三角形的面积公式的推导过程,都用到了哪种解决问题的方法,然后提出问题:梯形是不是也可以像它们一样可以转化成已学过几何图形呢?在学生操作前,课件显示以下几个问题引导学生探究:
1、转化成的平面图形的面积与原来梯形的面积有什么联系?
2、梯形的底和高和转化后的图形的各部分又有什么联系?
学生操作后发现方法不止一种。我引导学生重点分析和课本上一致的推导方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。其它方法有的.拼出的是特殊的平行四边形,有的推导的过程较复杂,在课堂上让选择这样的同学简单交流,没有展示推导过程。最后小结不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)×高÷2。
第一、在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深入。在以后的教学中,教师应及时筛选有用的信息,并对其分类和引导,有序展示。
第二、其它方法没有展示推导过程,想到此方法的学生的个性没得到张扬,也没有给其它学生充分的思考余地,导致最后小结不管用哪种方法来推,都能推出一样的面积计算公式时,部分学生有疑惑。
第三、学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也是我们数学教师长期要培养学生的一种数学学习的品质。
第四、有的学生没有完成推导梯形面积的过程,在以后的合作探究中,应让小组内再分为一帮一,以帮助学困生。
《梯形的面积》教学反思8
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
三、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
四、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
五、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的`过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
《梯形的面积》教学反思9
作为一名高中数学教师来说 , 上好每一堂课,要对教材进行加工,还要对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果 , 更为关注结果是如何发生 , 发展的 . 我认为可以从两方面来看:一是从教学目标来看 , 每节课都有一个最为重要的 , 关键的 , 处于核心地位的目标 . 高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看 , 教学组织形式是教学设计关注的一个重要问题 . 如果能充分挖掘支撑这一核心目标的背景知识 , 通过选择 , 利用这些背景知识组成指向本节课知识核心的 , 极富穿透力和启发性的学习材料 , 提炼出本节课的研究主题 , 就会达到理想的效果。这也需要自己不断提高业务能力和水平 . 以下是我对本次课教学的一些反思 . 。
一、对知识点教学的反思 —— 学会数学的思考
对于学生来说 , 学习数学的一个重要目的是要学会数学的思考 , 用数学的眼光去看世界 . 而对于教师来说 , 他还要从 " 教 " 的角度去看数学 , 他不仅要能 " 做 ", 还应当能够教会别人去 " 做 ", 因此我觉得反思应当从逻辑的 , 历史的 , 关系的等方面去展开 . : 本节课内容较为单一,目标也比较明确,就是用“以直代曲,无限逼近”的思想求曲边梯形的面积。然而,这种思想方法给学生带来的理解上的难度却不小,因为要真正理解这种方法必须对极限的思想要有比较清晰的认识。不过,新课程似乎为了避免增加学生的负担,而不要求深入介绍极限的概念,其旨在用最易于让学生接受的'手段,使学生获得最有价值的数学知识。这节课亦是如此。基于以上原因,备课时我认为本节课有两大难点:一是如何使学生获得“无限分割,以直代曲”的思路;二是对“极限”“无限逼近”的理解,即理解为什么将近似值取极限正好是面积的精确值。
二、对学数学的反思
对于在数学课堂上的每一位学生来说,他们的头脑并不是一张白纸 —— 对数学有着自己的认识和感受。不应把他们看着 “ 空的容器 ” ,按照自己的意思往这些 “ 空的容器 ” 里 “ 灌输数学 ” 。这样常会进入误区,师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学 , 常常说要因材施教 . 可实际教学中 , 又用一样的标准去衡量每一位学生 , 要求每一位学生都应该掌握所讲知识 . 这也许是自己一直以来教学的困惑与障碍。让学生多多思考 , 在本节课中未能达到预设目标 ,仍有“满堂灌”之嫌 。
《梯形的面积》教学反思10
《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的.习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。
一、复习旧知,引入新知
本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。
二、推导梯形的面积公式
梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。
三、在练习中巩固提高
本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。
《梯形的面积》教学反思11
《梯形的面积》五年级数学上册教学案例分析及反思“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
这节课我从学生的生活实际问题出发,一开始我就让学生感受到学习梯形面积计算的必要性,从而引发学生探究梯形面积的学习欲望。在这种强烈的学习欲望下,学生调动自己已有的知识经验,探究出了很多种方法,自己解决了数学问题,体验到了收获的快乐,既培养了创新思维能力,又增强了自主学习的'能力。当然,由于学生在探索中出现多种方法,因此,整节课就显得十分地紧张,有些推导的方法也不够让学生进行深入的交流。
《数学课程标准》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:
1.学习方式的变化是本节课最突出的一个特点。如:在“探索新知”这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过“动手实践—小组内交流—选择可行的方法”这样三个步骤,完成了转化和归纳的全过程。突出体现了“学生是学习的主人”这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。
2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。
不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:“两个完全一样的梯形”这一条件的重要性。
《梯形的面积》教学反思12
一、提出问题,激发兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的`图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
《梯形的面积》教学反思13
我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。
提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。
这节课存在的不足之处:
首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。
第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。
第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。
反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的`转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:
一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。
二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。
三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。
《梯形的面积》教学反思14
经过上一节课对于三角形面积的探索,本节课笔者对于教学有了延伸和改进。
在准备学具方面,笔者用到了直角梯形、等腰梯形、普通梯形三种,在教学过程中分别发给学生,有一张的,也有两张形状大小都一样的,这样可以更全面地去进行验证。其中在制作学具时,在剪裁方面也有了一些思考:如何才能减少边角料的损失?第一次的剪裁方式如下图,将一个长方形剪成了一个直角三角形、普通梯形和直角梯形,其中直角三角形在本次课中是用不到的,于是在第二次剪的时候做了调整,使得两边都剪出直角梯形,这样学具就不会浪费了。
相比于上次三角形面积公式的推导过程,这次笔者放手让学生去尝试,不仅要有剪拼的方法分享,还要有公式的推导过程,也曾考虑过,这种设计对他们来讲有一定的难度,但还是想锻炼一下,于是有了以下的成果:
相对来讲学生的表现还是比较不错的,联系上节课的验证方法,学生还进行了折,但是对于这里并不是很好进行,因此方法多是“拼”“剪拼”等,同时学生在推导过程中还不能做到有十分缜密的逻辑思维,但如果能逐渐去培养,是不是学生这方面的能力也会有增强。
笔者在教学过程中还是比较喜欢渗透一些隐性的内容,例如让他们学会用已有知识解决新问题,需要先将新问题转化为学过的问题,另一方面也会培养学生的积极思考,勇于发问的学习习惯,但是却缺乏了对于解题答题的规范步骤,最近发现学生出现了书写乱,答题不规范,多步混合运算直接写结果的情况,因此在本节课的'最后笔者针对课后第2和5题,给学生进行了板演,要求解决问题要写“解”,在计算面积时,要把面积公式写出来,然后再带入数据求解,并进行详细的答题。
但针对教材中最后一题的讲解并不是很详细,至于如何挖掘这道题的本质需要再进行进一步的推敲。
《梯形的面积》教学反思15
教材中对于梯形面积的计算公式的推导只给出了常规的推导方法。如何给学生提供具有挑战性的学习内容,引导学生更深入地进行探索,以更好地培养学生的思维能力,发展学生的智力,这是我们每一位教师都应该积极思考的问题。在教学中,我充分挖掘了教材的思维因素,注意沟通梯形面积计算公式与平行四边形面积计算公式在推导过程上的`联系,引导学生多角度地思考问题,给学生的探索、思维提供了一个比较适合的台阶,使学生在学习中,真正体会到了探索过程的艰辛。
在教学中,我紧紧抓住“梯形面积计算公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。学生在原有的三角形和平行四边形等知识经验的基础上通过自主动手剪拼,利用等积变形把梯形面积转化成了各种不同的平面图形,然后研究两者之间的联系,从不同的角度推导出梯形的面积计算公式。这种多角度的思考方法,既沟通了新旧知识的联系,激发了学生的求知欲,又通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程,培养学生获取知识的能力。
数学思想方法是数学的灵魂与精华,教师在日常教学中应当十分注重各种数学思想方法的有机渗透。在这节课中,我较多地运用了“转化”这种数学思想方法,引导学生把新知识转化成旧知识,利用旧知识来解决新问题,学生对这种方法也有很深刻的体验。相信,经常这样有机渗透、恰当孕伏,学生一定会得到更多的锻炼,今后的学习、工作也会受到较好的影响。
学生是学习的主体,教师是学生学习的促进者、参与者与合作者,教师在教学中要注意把学生的学习主动权还给学生,让学习的问题自然生成,再引导学生带着问题从已有知识出发进行探索,当学生在操作、探索、表述等遇到困难的时候,教师只应加以适当指导与点拨,而不是直接给予。但对于自主学习有困难的学生,教师应给予更多的关注,除了鼓励他们积极参与同学的合作学习之外,教师也可给予这部分学生更多的指导和帮助,使他们也能学有所得。
【《梯形的面积》教学反思】相关文章:
梯形的面积教学反思03-27
“梯形的面积计算”教学反思04-14
《梯形的面积计算》教学反思02-09
梯形的面积教学反思15篇04-14
梯形的面积教学反思(15篇)04-14
梯形的面积教案03-09
《梯形面积》说课稿12-02
《梯形的面积》说课稿11-20
梯形教学反思04-13