八年级上册数学教学反思
作为一位刚到岗的教师,我们的任务之一就是教学,写教学反思能总结教学过程中的很多讲课技巧,我们该怎么去写教学反思呢?以下是小编收集整理的八年级上册数学教学反思,希望能够帮助到大家。
八年级上册数学教学反思1
整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的量适当,表达流利,跟学生的互动性好,学生的`参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的学习态度。
然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的文字等形式去补充过渡,让学生有突兀的感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。
对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。
八年级上册数学教学反思2
一、课程分析
本节课是12.3角平分线的性质的第一课时。角平分线是初中数中重要的概念,它有着十分重要的性质,通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
二、学生情况
八年级学生有一定的自学、探索能力,求知欲强。借助于课件的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。通过创设情境、动手实践,激发学生的学习兴趣,促进学生积极思考,寻找解决问题的途径和方法。
在教学中,采用学生自己动手探索的学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
首先,本节课我本着学生为主,突出重点的意图,结合课件使之得到充分的.诠释。如在角平分线的画法总结中,我让学生自己动手,并让学生自行思考证明。为了解决角平分线的性质这一难点,我通过具体实践操作、猜想证明、语言转换让学生感受知识的连贯性。
其次,我在讲解过程中突出了对中考知识的点拨,并且让学生感受生活中的实例,体现了数学与生活的联系;渗透美学价值。
再次,从教学流程来说:情境创设---实践操作---交流探究---练习与小结,这样的教学环节激发了学生的学习兴趣,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。
四、本节课的不足
在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。
对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这节课的反思我深刻的意识到自己在新课改的教学中还有太多的不足,以后不仅要在思想上认识到新课改的重要性,更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与探究能力。
八年级上册数学教学反思3
整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的应用不熟练,运算符号的确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。
依据普陀区中学数学教学常规实施要求:
复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的运算法则的特征解决易错题;同时在各例题的设计上层层推进。例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;例2需注意区分幂的运算法则与同底数幂相乘法则的'不同处,并注意运算顺序与运算符号的确定;例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。
八年级上册数学教学反思4
本节课主要复习了有理数、无理数、实数的概念及其分类;让学生明确了算数平方根、平方根和立方根等几个重要概念,会求一个实数的相反数与绝对值;难点是绝对值的有关化简运算,非负数的应用。
我认为本节课成功之处在于:
1.基本知识点讲解细致。对基本知识把握准确,讲解过程中,提出了可能出现的错误点,并教给学生避免出错的方法。
2.注重数形结合。对于一些概念,一定要找到与之对应的`数量关系。
3.例题的设计由易到难,符合学生接受知识的顺序。本节设置了三个例题,第一题是纯粹的实数的运算;第二题是有关算术平方根、绝对值的非负性的应用:第三题是数形结合的题,直接利用数轴,进行绝对值和二次根式的化简,达到本节课知识的引申与升华。
4.练习题设计题目典型,有代表性,包含的知识点多,知识深度够,达到基本知识的灵活应用。
5.课堂采用多媒体教学,容量大,数形结合直观,符合复习课的特点,符合新的教学理念。
本节课的不足之处:黑板板书较少,板书设计应更细一些。
通过这次讲课我得到的体会是:讲复习课,尽量在制作课件方面注意挖掘数学本身的动画效果,加强直观性,增强学生的学习兴趣;内容方面容量要大,知识点要全,深度要够。例题设计要有一定的梯度,达到欲设的最佳效果。
八年级上册数学教学反思5
本节课的主要内容是让学生理解算术平方根的含义,会求正数的算术平方根并会用符号表示;了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
本节内容基本能按照事先设计上下来,学生的反应良好,能较好地掌握所学地新知识,本节课的内容不是很多,这是学好算术平方根的关键,也为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,但在教学过程中也存在以下主要问题:
1、语言不够流畅,对学生关注不够;未能从多方面去调动学生的积极性。
2、时间把握不够理想。
3、对学生存在的问题分析讲解不够详尽。
以上存在的问题,使我今后教学需要努力改正的地方,在以后的教学过程中要通过练习发现学生存在的问题,并对一些典型的'错题进行分析讲解,通过练习规范学生的解题格式,提高学生解决实际问题的能力;在以后的教学过程中会注意这些问题,确保每节课每个学生都能听懂。
八年级上册数学教学反思6
一、课前的准备与预设
课题:三角形全等的判定(一)(复习课)
教学目标:
1、知识目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。
2、能力目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力。
3、情感目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。
教学重、难点:从复杂多变的图形中探究满足定理的条件。
教学方法:以“引导──探究”为主,“启发──讨论”
教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P--P(三课时);其次,围绕本节课的复习内容,要求每位同学撰写一篇小论文;第三,上课时,先由学生结合论文总结知识要点,然后从P例2展开,通过“连接BC、EF”两次辅助线,让学生寻找全等三角形(为说明方便,把BF、CE交点记为O)。再用“SAS”证明△BEO≌△CFO受挫后,用剪纸的方法发现它们的确重合,为教学“ASA”埋下伏笔。
例2、已知,如图,AB=AC,E、F分别是AB、AC上的点,且AE=AF。
求证:△ABF≌△ACE
二、课中的生成与处理
在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P的例4”。另一生紧接着说:“作射线AO交BC边于D点,则AD是∠BAC的角平分线,图中有更多的全等三角形。”这时我心中不禁为之一震,我为课前的粗浅设计和公开课上出这样的意外情况而震惊!更为学生的发散思维而折服!
怎么就没有学生站起来说连接EF呢?该如何是好?是用“这两种编法留到课后大家讨论”搪塞过去,按原计划讲完这节课?还是按学生思路探索结论?如果这样探索下去,这节课内容是完成不了的;如果阻止学生探索,岂不扼杀了学生的求知欲望和创新意识?
这个问题的`实质就是当前教学改革中面对的以传授知识为中心,还是以培养能力为中心;以教师为中心,还是以学生为中心;重解题的发展、探索过程,还是重固有知识的运用;是提高学生的整体素质,还是增加学生知识的素质教育问题。换言之,执教者是采取按照事先预设好的思路,把学生一步一步地引向窄小的通道,这种注入式的传统教学模式进行教学,还是采取让学生自主发展、自我探究的这种“设疑---探究---解答”的开放式教学模式进行教学,这也是运用传统教学观,还是现代教学观指导课堂教学的问题。
于是我果断地改变了原来的教学设计,肯定和表扬这两个学生的编法,继续探究问题的解决思路。问:“AD为什么是∠BAC的角平分线呢?”问题一放开,学生的思路也开阔了。一学生马上回答:“因为△BCE≌△CBF,所以∠OCB=∠OBC,所以OB=OC”(原来,“等腰三角形的判定”他也自学了!)再利用“SAS”证明△ABO≌△ACO”,所以∠BAO=∠CAO。受其启发,另一学生说也可以用“SSS”证明△ABO≌△ACO。这样一来,学生的积极性更高涨了。又有一学生说用“SAS”证明△AEO≌△AFO也可以达到目的。此时,有一学生可能太激动,说:“老师,我要编一题:请问图中有哪些相等的线段、相等的角?”……这节课在热烈的气氛中结束。
三、课后的收获与体会
(一)学生的收获
学生在自学的基础上,把判定定理1内容与等腰三角形性质有机地结合起来,并能迁移到三角形全等的其他判定定理中,获取了较大容量的知识,培养了思维的广阔性、变通性、灵活性等思维品质,激发了学习数学的兴趣,孕育了获取知识的探索精神,提高了分析问题,解决问题的能力,其重要意义比做几题练习题要大得多。
(二)教师的体会
通过教学,我深刻地体会到:学生创新学习精神、创新学习意识、创新学习思维、创新学习方法的培养应当成为素质教育的重点。而课堂教学则是落实素质教育的主阵地,因此,在课堂教学中,应让学生感受、理解知识产生和发
展的过程,激发学生独立思考和创新学习的意识,提高学生获取新知识并能运用知识去分析和解决问题的能力,变学生由“学会”转向“会学”再到“创造学”,变由教师“教”转向学生“学”与“创”,把培养学生创新学习精神放在首位。为此,在教学中应努力做到以下几点:
1、变教案为学案。教案既要有教师的教学过程的教学活动、教法,又要有学生的学习过程和学习活动、学法,充分突出学生的主体地位,让学生有质疑问难、实践操作的时间和空间。
2、创设学生氛围,变革教学模式。
(1)应有学生与老师一起平等地探讨教材的机会,不定向学生的思维,营造宽松民主的学习氛围;
(2)实行参与式教学,让学生大胆地动脑、动口、动手,允许学生发表自己的观点,提高学生课堂教学的参与度;
(3)教师要有驾驭课堂的能力,能及时调整教学策略,实行开放式教学。
3、引进激励机制,激发求知动力。
(1)要阶段性地进行效果反馈,不断强化学生的学习动机;
(2)要因材施教,分层次教学,让各层次学生都有一种成就感;
(3)开展各类学习竞赛活动,调动创新学习的兴趣。
四、后期的反思与提升
课堂之所以是充满生命活力的,就因为我们面对的是一个个鲜活的富有个性的生命体。课堂教学的价值就在于每一节课都是不可预设、不可复制的生命历程。追求生命的意义应成为数学教学的起点和归宿。作为教师要勇于直面学生的非预设生成,积极地对待,冷静地处理,把学生的这些非预设生成尽可能转化为自己的教学资源。
第一,教师要重视课前的备课。不能错误地认为,既然课堂是生成的,课程改革以后应该简化备课,甚至不要备课。孰不知,没有备课时的全面考虑与周密设计,哪有课堂上的有效引导;没有上课前的胸有成竹,哪有课堂中的游刃有余。所以,课程改革以后不是不要备课,而是给备课提出了更高的要求。在备课中既要关注教材,更要关注学生。要考虑不同的学生会有哪些不同的思考,可能会出现哪些解决的方法。使自己的教学设计更符合学生的认知能力。
第二,教师要转变教学观念,树立正确的学生观。理念决定行为,教师要更新教学观念,树立以学生为主体的意识,要学会尊重和欣赏学生,舍得放弃自己的权威。教师要学会倾听,善于倾听学生的回答。学生会说了,也就得到发展了,这也是课堂教学的最终落脚点。教师还要沉得住气,舍得让学生说,要让学生把话说完,在学生尚未阐述清楚观点时,切莫随便发表自己的看法,这体现了对学生的尊重。更重要的是,要倾听学生发言的背后,他在想些什么,为什么会这么想。即使学生说错了,也要分析一下为什么错了,为错找出病因,然后对症下药。
第三,教师要追求精心的预设和课堂生成的合理利用。课堂是动态生成的,它的生成性来自于教师对教育的科学和艺术的把握,来自于课堂的开放性。课堂教学中讲究师生平等,学习问题需要师生平等地研究。知识是不能置顶的,它应该是无限生成,发展的。似天一样高,如海一般阔,学生不应该是笼中鸟,网中鱼,给予他们自由的空间和展示的平台,他们就可以充分地表达自己,肯定自己,而我们必须做到的只是信任,引导和参与。
总之,数学课堂教学要真正体现“以学生的发展为本”的教学理念,教师就必须转变教学观念,创造性地运用教材,创造性地设计学习活动,从而有效促进基于学生的生活实践或学习探究活动的预设生成中,让学习主体的认知结构、自主探究、创新能力与个性发展等方面持续地、动态地生成于开放合作,积极互动的课堂学习环境中,把课堂还给学生,让课堂充满生命活力。
八年级上册数学教学反思7
本节课是讲角平分线的性质与判定。下面从本节课的教学设计、课堂效果以及本节课的不足之处进行了反思。
一、对教学设计的反思
在设计这节课时,我想如果在一节课的时间里把性质和判定学完,那只能是把本节课设计为探究课,而对于性质与判定的应用只能放在下一节课,于是我把这节课设计为探究课,把对角平分线的性质与判定定理的探索作为本节课的重点。本节课的教学方法是启发探究式。为了增加课堂密度和教学效果以及突破本节课的教学难点,我仔细研究了一个课件,知道了以增加学生对角平分线上任意一点的理解。在学生探究角平分线的性质与判定时,我分别创设了情境,一是为了给学生的探究搭建平台,培养学生的动手操作能力。二是为使学生感受到数学知识来源于实际并应用于实际。同时也体现了新课程标准下的课堂应体现学生的主体性。
二、对课堂的再认识
如果说一节课的课堂设计是上好一节课的根本,那么课堂上老师的传授方式更是关键。这其中包括老师对课堂气氛和学生的把握,老师的教态是否大方得体,尤其有很多老师听课的时候,还包括语言是否精炼,知识的逻辑感是否连贯,层次是否清楚等。首先说本节课的课堂气氛,不知是否是第一节课的缘故亦或是学生有点紧张,平时爱回答问题的学生不太敢发言了,所以感觉课堂的气氛还是有些沉闷。当然,老师在调动学生的积极性时,要设法消除学生的紧张感,让学生在课上轻松而愉快的学习知识。这是对任何一位老师的考验。其次通过看自己的录像,平时自己没有在意的细节,包括自己在讲台上的站位和站姿,自己不经意的手势和说话的口头语都暴露出来。感觉自己精心锤炼的语言在录像中仍有些罗嗦等等。总觉得自己上课时怎么会留有那么多的遗憾。再次对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,当然这一环节时间的浪费与我讲授尺规作图的方式不够合理是分不开的,以至于在后面所准备的`习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
三、不足之处的反思
通过这堂课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与个人能力。
八年级上册数学教学反思8
面临国庆假期,学生有些沉不住气,放假回来还要进行月考,无疑,这对学生是一种考验,学生没有足够的自制力利用假期进行复习,只要它们能够按时完成作业我就心满意足了。因此,要在假期前做一定的准备,按照我们的集体备课时间,我们赶在运动会之前专门安排一节课进行复习,也算是自我安慰吧。
本次考试我们把前两章的内容都加进去。第一张前面进行了复习、检测,也比较简单所以专门针对第二章进行重点复习。第二章轴对称主要内容是从生活中的图形入手,学习轴对称及其基本性质欣赏体验轴对称在生活中的广泛应用。然后在此基础上利用轴对称,探索等腰三角形的性质,学习它的判定方法,进一步学习等边三角形。本章轴对称的性质、等腰三角形的性质和判定是重点要注意让学生掌握。人们生活在三维空间里丰富多彩的图形世界给图形与几何的学习提供了大量素材,在教学中我们注意联系实际,从实际出发引入概念并将所学知识应用到实际生活中。本章内容较多,教学时注意各部分之间的联系,进行有机的整合。在内容处理上书中含有大量的思考、探究、归纳等然后学生多活动,探索发现几何,经历知识的“再发现”过程。在探究活动中发展创新思维能力,改变学生的学习方式。在发现的基础上再经过推理证明这些结论使得推理证明成为学生观察、试验、探究得出结论的自然延续是图形的认识与证明有机的整合。例如Χ缘妊三角形“等边对等角”“三线合一”的性质的得出ネü设置“探究”“思考”让学生剪出等腰三角形,并进一步利用轴对称的性质思考其中相等的.线段和相等的角,进而发现等腰三角形的性质。
接着通过做出等腰三角形的对称轴得到两个全等的三角形,从而利用三角形的全等证明。这样让学生经历观察、试验、探究、归纳、推理、证明的全过程。
八年级上册数学教学反思9
轴对称图形不仅仅是把一个图形平均分成两半,而且对于一幅图中的任何两个对应点到对称轴的距离都是相等的。
在教学“轴对称”这节课时,首先让学生独立画出例题1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例题1,接着在例题1的'教学过程中,适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征,通过引导学生分别观察不同类型的轴对称图形的各对应点与轴之间的关系,进而让学生探索、发现图形成对称的基本性质。
不足之处如果这节课是运用多媒体上的话就更直观、更有效果了,直接可以显示出“折叠”、“重合”形成轴对称图形,清晰而一目了然。
八年级上册数学教学反思10
通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。
在授课结束后发现学生对于同分母的分式的加减运算掌握得比较好但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的`形式。
分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。
八年级上册数学教学反思11
这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。
我选择的内容是“相似三角形判定定理一”应用的.一个方面,这是根据对最近几年中考、各区县模拟考的压轴题的研究,发现全等三角形证明当中,我们可以找到“一条直线上有三个相等的角”这样的条件原型,所以在这节课就是基于这样的原型,选择了相关内容,试图从一个侧面突破这章教学的难点。
通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。
八年级上册数学教学反思12
变量与函数的意义是学生难以理解的概念,本课的学习必须用足力气,怎样引起学生的重视,除了学前动员,还有就是利用课本的编排特征加以说明,一般数学新知识的引进有一两个引例就可以了,本课为了引进新知识,课本上安排了五个引例!
在课堂学习时,五个还是要一个一个地研究过去,紧紧围绕着函数的定义解读,初步领会引例的意图,还要舍得用很到的篇幅举出一些变化的实例,指出其中的常量和变量,开始学生举出了几个例子,再由学习小组讨论交流,每个小组都收集五个以上的实例。安排这个活动的意图是让学生感知现实生活中有很多变化着的量,并且两个变化着的量都有各自的数量关系、我们要善于发现这些数量关系,用数学的眼光观察现实世界。再结合课本上的五个引例和学生举出的实例分析解剖,得到函数的概念(一般地,在某个变化的过程中,有两个变量x与y,对于其中一个变量x的每一个确定的.值,另一个变量y都有唯一确定的值与其对应,那么x叫做自变量,y叫做x的函数)。对照定义再回到五个引例及学生举出的实例,体会函数的意义。
函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:
1有两个变量,
2一个变量的值随另一个变量的值的变化而变化,
3一个变量的值确定另一个变量总有唯一确定的值与其对应;
函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。
作了上面的学习过程,使我们这一课更加厚重。
八年级上册数学教学反思13
《轴对称》是人教版八年级的一个重要的教学内容。识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美是课程标准中对这一内容的要求。
本堂课我原本想借助多媒体技术从学生熟悉的生活入手,以“漂亮的”轴对称图形入手,让同学们能直观的感受和认识轴对称图形的特点。及培养学生关于数学美的数学特点。但由于四班的投影机不能用,最还只得选择以图片的方式,也达到了较好的课堂效果,只是缺少动感效果。
第一:在观察思考中掌握轴对称图形及其概念。
由于不能用多媒体,我就打印了一些轴对称图形的图片,上课时我让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形是否是对称的,并通过小组动手对折的方法操作来验证它们为什么是对称的.,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,从感观上体会什么是“完全重合之后。我就可以给出“轴对称图形”的概念,随后我给出几组图形让学生判定是不是“轴对称图形”。让学生再次明确什么是“轴对称图形”。
第二:学会找轴对称图形的对轴称
在上一环节让学生对折,然后给出几组图形,让学生发生轴对称图形都是通过某一直线后,两部分会重合。那那条直线就显得很重要,让学生明白“对称轴”的重要性,也知道如何找对轴称。给出对称轴的定义后,我还是选择了几组有特点的轴对称图形,让学生找对称轴。并判断那一组图形当中是不是只有一条对称轴。再下一步,找出轴对称图形的所有对称轴。
第三,轴对称图形和两图形关于某直线对称区别及联系
对于这一点我是让学生自己以小组的方式来讨论,最后以小组汇报的方式让学生自己总结,最后由我自己来归纳总结。这样子一来可以让学生在课堂最后时间有兴趣学,也通过讨论让学生更加明白什么是轴对称图形及两图形关于某直线对称的定义。可以很好的取得教学效果。完成本课的教学任务。
在完成本节课的教学任务的时候,我还是注重了向学生介绍数学美的观点,以轴对称图形入手,然后介绍我们的证明的简结,论题的简洁……等等。本次课取的了比较好的教学效果。
八年级上册数学教学反思14
昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“SSS”、“SAS”、“ASA”、“AAS”和“HL”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。
对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。因此,本课的复习就是重在证明题的分析方法上。
这一课的教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。又安排了两次全等的证明题,并由命题的证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。
在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。
这一课复习安排的`内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。
收获:
利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
不足:
1、学生识别图形的能力差、如:“ASA”与“AAS”“HL”判别不清。
2、几何证明题一直是学生的一个弱点。学生存在会分析,但是书写不规范的情况。
3、构造三角形全等的能力不足。如:适当添加辅助线解决问题。
4、从复杂图形中抽出基本图形的能力不足,导致问题解决不了等。这些在今后的学习中是一个需要改变和提高部分
八年级上册数学教学反思15
本节课的目标是会推导公式(a+b)(a-b)=a2-b2,并能简单计算。上一节学了多项式×多项式的运算法则,因此在回顾旧知识利用法则来计算(a+2)(a-2),(2x-y)(2x+y)的同时直接引入本节课的内容,问学生上面的两个多项式乘多项式中各个式有什么特征?结果又有什么特征,学生的回答跟预测的差不多看是能看出来但要把他描述出来有点困难,因此指导并和学生一起用语言描述:二项式乘二项式中其中一项相同,另一项互为相反数的积等于(自己不回答学生回答)两项的平方差,这时就问对吗?学生很快就能反映过来,更能加深印象结果应该等于相同项的平方—互为相反数项的平方。继续探究同类型的计算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此规律,让学生归纳出结论(用式子),因为从特殊到一般的归纳学生比较擅长,得出结论是:(a+b)(a-b)=a2-b2,因为结果是平方差所以把公式的名称叫为平方差公式。接着那学生尝试着用文字归纳,为了归纳的方便把连接两项的符号看成运算符号,该怎么描述此规律:两项的和乘两项的差(提示学生这两项跟前面的两项是一样的)等于这两项的平方差,接着几个二项式乘二项式的练习让学生板演,目的'是看看学生的易错点并一起归纳怎样做不容易出错及应注意那些事项:利用平方公式计算,首先观察是否符合公式的特点,用不同的符号把找到相同的项和相反的项表示出来,并把它写成公式的形式,先不要急着答案出来。让学生比较用法则计算跟用公式计算的区别,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,但运用公式计算一定要看是否符合公式的特征,严格要求不能乱套公式。
为了让学生理解公式的几何背景,通过拼图计算,既可以直观说明公式的几何特征,又可以体现数形结合。
【八年级上册数学教学反思】相关文章:
数学上册教学反思04-16
上册数学教学反思04-18
八年级上册数学教学反思06-14
人教版八年级上册数学教学反思04-16
八年级上册数学教学反思【必备】06-14
八年级上册数学教学反思15篇04-17
初三上册数学教学反思04-01
八年级语文上册教学反思04-12
八年级上册《观潮》教学反思04-12