加法交换律教学反思
作为一位到岗不久的教师,我们的任务之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么问题来了,教学反思应该怎么写?以下是小编整理的加法交换律教学反思,仅供参考,欢迎大家阅读。
加法交换律教学反思1
一、导入部分
上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。
反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。
二、探究规律
在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的.探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。
反思:教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。
总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。
1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。
2、对“关注每一位学生”这个问题,没有做到。
加法交换律教学反思2
在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的.大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。
成功之处:
1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。
2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。
不足之处:
习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。
再教设计:
1、注重习题的备课,减少低效教学流程。
2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。
加法交换律教学反思3
本节课的时间把握的正好,学生掌握的程度也还可以,达到了本节课的教学目标。不足之处:课堂上,我的状态不太佳,学生也不是很活跃,基本上都是几个人在回答问题。平时班上的课堂气氛挺活跃的,但是这节课不知是怎么回事,连学习很好的`孩子上黑板上演板都错了,可能是孩子们有些胆怯吧。还有就是自己评价语言太单一了,以后要在这方面多下功夫。争取让自己的课堂更生动完美。
加法交换律教学反思4
1、通过模仿举例,渗透等量代换的数学方法。
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
2、通过对大量数学事实的对比,发现其中的规律,学习不完全归纳发。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的.所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
3、不足
本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
加法交换律教学反思5
得:(1)通过模仿举例,渗透等量代换的数学方法。
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
(2) 通过对大量数学事实的对比,发现其中的规律,学习不完全归纳发。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的`结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
失:本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
加法交换律教学反思6
《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,让学生亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。新课标指出,让学生经历有效地探索过程。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题,促使学生积极主动地参与到“倾听故事——提出猜想——举例验证——得出结论”这一数学学习过程。现对本节课的教学设计说以下几点:
1、创设问题情景,激发学生学习兴趣本节课以成语故事《朝三暮四》为切入点,吸引了大部分学生的注意力,自然而然激发学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围。通过教师设问:“故事讲完了,你想说些什么?”水到渠成地引出数学算式“3+4=4+3”,进而提出猜想“交换两个加数的位置,和不变?”。这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、组内交流讨论,举例验证猜想教师引导学生思考举出怎样的例子去验证猜想?应该举多少个?意在渗透举例验证这一数学方法,同时让学生初步感知“无数”的'概念。
在小组讨论的同时,教师及时进行点拨,引导学生举出如下例子:
1、3+6=6+3,4+5=5+4,7+8=8+7
2、1+2=2+1,12+13=13+12,100+200=200+100,20xx+3000=3000+20003、0+5=5+0,1|4+2|4=2|4+1|4,1.02+2.03=2.03+1.02小组汇报后,让学生评价各小组举例,真切体验“举例验证要考虑到方方面面”。
3、练习层层深入,巩固所学新知为了让学生巩固本节课所学的知识,为学生提供了充分的练习内容。让学生利用加法交换律进行填空即可,使学生即时运用掌握的知识。本节课使学生由简单应用到灵活应用的练习中,掌握本节课的基础知识,同时又培养了数学思想。本节课的教学设计比较创新,打破了传统教学观察得结论的方法,而故事引入,提出猜想,举例验证,和学校提倡的“主体多元,合作探究”教学模式相吻合。同时,也适合本学段学生的发展特点、认知规律。当然,在实际的教学过程中,也存在很多的缺点和不足,如下:
1、在引导学生思考举怎样的例子来验证猜想这一环节,处理的不够恰当。不是学生不会思考,是教师的设问指向性不够明确。比如,可更改为“我们是不是可以再举一些加法算式的例子来验证呢?”,让学生明白举例是指举加法算式,然后交换他们的位置,看和是否相等。
2、在让学生体验“无穷”思想时,没有达到预设的教学目的。课堂教学时,当学生举了大量的例子之后,教师询问是否可以验证我们的猜想时,有的学生还是坚持认为不可以,一定要举无数个例子才行。此时,可自然衔接,引入用字母a和b可表示任意数。这样,我想比教师生硬地解释,刻意地让学生用自己喜欢的方式来表示加法交换律,效果要好得多。
3、在引出加法交换律时,要明确强调这一规律中,变的是加数的位置,不变的是他们的和。让学生反复地说,a和b可以代表哪些数?
4、在课堂练习时,可引导学生回顾我们在哪里用到过加法交换律。可利用课本31页第2题,将新学与旧知巧妙地结合。另外,要将每一个习题的设计意图,充分地挖掘出来。
总的来说,这堂课取得了预期的教学效果。学生不但掌握了加法交换律,更重要的是学会了数学方法,为下节加法结合律以及乘法运算规律打下很好的基础。
加法交换律教学反思7
《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。
作为一堂概念形成课,我们要让学生经历有效地探索过程。通过不断的猜想,不断的论证,最终得出结论。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题。现对本节课的教学总结如下:
一、“速算比赛”妙入课题
本节课,以计算题为切入口,精心挑选了相关计算题,让学生通过计算发现所给题的区别与联系,引发学生思考:通过观察这组得数相同的算式,你发现了什么?学生能较快的发现,两个加数交换位置,他们的.和不变。同时得到全班同学异口同声的赞同,这是老师提出疑惑:是否所有的两个数相加,交换加数的位置,他们的和不变呢?抛出问题,引出猜想,进而问学生:你还能写出像这样的算式吗?让学生动手写算式,充分经历概念形成的过程,在写的过程中发现问题:这样的算式你能写多少个?“无数个!”紧接着老师追问:“那你能用一个算式概括所有的算式吗?”引导学生探索加法交换律的公式表达。通过汇报、展示,揭示课题。
二、微课引入,火龙点睛
在教学中,我提了一个问题:今天所学的《加法交换律》在以前的学习中我们也是否接触到了呢?引导学生回顾旧知,给他们一分钟的思考交流时间,有的同学能够说到一二,有的却一脸茫然,这个时候引入了提前准备好的微视频,其中的配音就是找了本班学生配的。当大家听到熟悉的童声,看到一年级的看图写算式以及三年级的加法验算等,(都用到了加法交换律,只是当时没有把这个概念提出来而已,)豁然开朗,课堂顿时热闹起来。让同学们把前面的旧知和今天的新授结合起来,加深了新知的理解,起到了画龙点睛的效果。
三、留下悬念,提升迁移
在课堂最后,我又给孩子们抛出了一个悬念:既然加法有交换律,那减法呢,除法和乘法呢?这个问题不仅引起了学生的兴趣,更为后面的学习埋下了伏笔。我看到学生们不由自主的在本子上写出算式进行验证,说明本节课的数学思想方法已经潜移默化到他们的脑海中。他们能很快的通过举例论证来否定减法和除法没有。“而乘法有吗?在后面的学习中我们将继续探讨这个问题”由此结束本节课。
总体来说,本节课达到了预期的效果,让加法交换律深入了他们的内心,特别是让他们经历了“提出猜想-举例论证-得出结论”的过程。本节课不仅仅学会了加法交换律,更让他们学会了数学方法,为下节课的加法结合律以及乘法交换律做好了铺垫。更难得可贵的是,学习中不仅仅收获了数学知识,更收获了期间的数学兴趣。
加法交换律教学反思8
今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!
听完课后,赵老师没来得及喝水就结合这节课进行了评析。
赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!
同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的.结果都表示现在有的因此人数是一样的。结果是相等的。
“理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的课例。
从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!
加法交换律教学反思9
世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。
在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的`眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而 是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
3、注重教学过程的探索性。
在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”
在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。
(2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。
(3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。
(4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。
总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。
加法交换律教学反思10
在教学加法交换律时我采用了情境导入—探究新知—反馈练习三个教学环节,情境导入环节利用课本上李叔叔骑车旅行的情景导入,得出已知条件和问题;探究新知环节,让学生先独立完成,集体交流时发现算式结果相同,用等号连接,得出56+28=28+56,然后又让学生仿照举例,最后引导学生得出规律;反馈练习环节学生的积极性很高,本节课的教学非常顺利,轻松完成教学任务。但我觉得本节课的知识太少,能不能把加法交换律和乘法交换律合并成一节课讲解呢,在以后教学本节课时我准备在“交换律”这节课进行以下几个方面尝试。
(1)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。另外在材料呈现的顺序上,改变了教材编排的顺序:先教学加法交换律和加法结合律,然后教学乘法交换律交换律和结合律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课我首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的'“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律是人教版小学数学第八册第三单元的内容,先教学加法交换律和结合律,然后是交换律和结合律的应用,接着乘法交换律和乘法结合律,乘法分配律。而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课的重点应放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
加法交换律教学反思11
课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:
一、学习问题的产生激发了学生的探究的欲望。
课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的'探究欲望。
二、情境的创设发散了学生的数学思维。
教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。
三、学法的指导体现了知识建模的过程。
数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。
四、以学生为主体创造性地使用教材。
本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。
不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。
加法交换律教学反思12
前段时间听了四年级的一节研讨课——“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:
学生1:√+×=⊿,×+√=⊿,√+×=×+√;
学生2:a+b=w=b+a=w
……
回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:
教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天平的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。
对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天平的效果不是很好,天平小,很多同学没有看见,因此天平的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。
【思考】我们在平时的教学中是不是把探究新知的'过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!
加法交换律教学反思13
师:咱们来做个游戏,我说3+2,你们就说2+3,看谁反应快。明白吗?现在开始。
师:5+6
生(齐):6+5
师:20+30
生(齐):30+20
师:为了让大家看得清楚,现在请一个同学上台,把我们游戏的算式用等式逐一写在黑板上。
师:25+13
生(齐):13+25
师:75+25
生(齐):25+75
师:哪位同学上来也试一试。
生(甲):33+44
生(齐):44+33
生(乙):26+25
生(齐):25+26
师:从刚才这位同学写的等式中,你们发现了什么?有什么规律吗?
生(甲):两个加数交换了。
生(乙):我发现,两个加数不但交换了位置,而且左右的结果是一样的。
师:你们的'想法很有道理,也就是说在加法中,交换两个加数的位置,结果不变。你能用比较简单的方法表示刚才发现的运算规律吗?
生(甲):我认为用符号可以表示,两个数就用不同符号表示,比如用○和□,这个规律就可以这样表示:○+□=□+○
生(乙):我用甲数+乙数=乙数+甲数
师:你们能用字母尝试写一下吗?
生(丙):a+b=b+a
师:a、b各表示什么意思?
生:a表示前面的加数,b表示后面的加数。
师(板书):a+b=b+a
师:这道等式表示了加法中的一个重要的运算规律,这个规律就是加法交换律。
反思:
1、通过创设游戏情境,让学生在游戏中体会加法交换律,学生在愉悦的氛围中认识规律。
2、让学生用不同的方法表示规律,一方面可以培养学生的创新意识,另一方面让学生经历由数到符号的演变过程。最终通过交流互动生成由字母表示的加法交换律。
3、整个过程以学生为主体,把学习主动权交给学生,使探究成为课堂的主旋律,这样富有生气的课堂教学,必定有利于学生的发展。
加法交换律教学反思14
加法交换律是一节概念课,是在学生已经掌握四则运算的基础上进行教学的。本节课的教学设计有意识地让学生运用已有经验,亲身经历“提出猜想—举例验证—得出结论—总结规律”这一探究过程,同时注重学习方法的渗透,为高年级的学习打下基础。
1、创设问题情景,激发学生学习兴趣。本节课以成语故事“朝三暮四”为切入点,吸引了大部分学生的注意力,自然而然地激发了学生学习的兴趣。同时,为学生进行教学活动创设了良好的.氛围,这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、本节课让学生经历数学知识发生、发展和形成的过程,同时注重数学思想和方法的渗透,通过猜想、验证、类比、归纳,提升学生的理性思维,提高学生应用数学思想方法解决实际问题的能力。
加法交换律教学反思15
教学“加法交换律”这一块内容时我打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在教学“加法交换律”这部分内容中,我在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的`时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律”,同时可迁移到“乘法”中来,获得“乘法交换律”。在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
【加法交换律教学反思】相关文章:
加法交换律教学反思06-22
数学加法交换律教学反思04-22
《加法交换律和加法结合律》教学反思09-25
《加法交换律》说课稿12-05
《加法交换律》说课稿06-20
加法教学反思03-28
交换律教学反思02-19
笔算加法的教学反思02-28
《认识加法》教学反思03-09