当前位置:育文网>教学文档>教学计划> 高三数学教学计划

高三数学教学计划

时间:2022-05-22 02:07:56 教学计划 我要投稿

高三数学教学计划

  时间过得可真快,从来都不等人,我们又有了新的学习内容,写一份教学计划,为接下来的工作做准备吧!那么教学计划怎么写才能体现你的真正价值呢?下面是小编收集整理的高三数学教学计划,仅供参考,希望能够帮助到大家。

高三数学教学计划

高三数学教学计划1

  一、教学内容

  本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容,

  二、教学指导

  1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。

  2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的`数学实践能力,这也是新课程标准的核心要求。

  3、教学要注重基本知识、基本技能、基本方法的掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好度,切忌将选修内容纳入必修课程。

  4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。

  5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解广东高考改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。

  6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。

  7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。

  8、试卷分值、试卷结构、考试时间待定,难度系数为0.600.65。

  9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。

  三.课节设置

  四.教研活动

  1.充分利用有利条件课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。

  2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学任务。

  3.本学期每人上一堂公开课,计划上交教学处。

  4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。

  5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。

  6.争取做一个课题,具体内容与安排由科组合议。

高三数学教学计划2

  教学目标:

  1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

  教学重点:等差数列的概念及通项公式

  教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的.推导。

  教学用具:多媒体

  教学方法:启发探究式教学法、情境教学法

  教学过程:

  一、 新课引入:

  1、 小时候妈妈教我们数数,怎么数的呢?得到什么数列?(同学们:1,2,3,4,5,……)

  2、 如果我们从0开始,每隔5记录一次得到什么样的数列呢?(同学们:0,5,10,15,20,……)

  3、 爸爸到银行存了10000万元钱,年利率为0.36%,那么按照单利计算,5年内各年末的利息各是多少?本利和各分别是多少呢?(利息=本金*利率*存期,本利和=本金*(1+利率*存期,单利即不把利息加入本金计算下一期的利息)

  (同学们:利息分别为:36,72,108,144,180

  本利和分别为:10036,10072,10108,10144,10180)

  用多媒体给下列生活实例让学生轻松状态下接受新知识

  二、 新课探究:

  用多媒体给出下面的数列,让学生找出它们的共性

  数列①: 1,2,3,4,5,……

  数列②: 0,5,10,15,20,……

  数列③: 48,53,58,63

  数列④: 18,15.5,15,10.5,8,5.5

  数列⑤: 36,72,108,144,180

  数列⑥: 10036,10072,10108,10144,10180

  学生经过讨论得到如下表格

  对于数列①:,从第2项起,每一项与前一项的差都等于_____1___;

  对于数列②:,从第2项起,每一项与前一项的差都等于_____5___;

  对于数列③:,从第2项起,每一项与前一项的差都等于____5____;

  对于数列④:,从第2项起,每一项与前一项的差都等于___-2.5____;

  对于数列⑤:,从第2项起,每一项与前一项的差都等于____36_____;

  对于数列⑥:,从第2项起,每一项与前一项的差都等于____36_____;

  引导学生得到等差数列的定义

  一般地,如果一个数列从第2项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,数列的第一项叫首项

  如果让我们给上述6个数列下个定义,我们给它一个什么称谓最恰当呢?

  用多媒体给出给出定义

  教师引导学生认识公差的特点 大家再回过来看上面的六个数列,他们的公差分别是多少 ?

  公差为正时数列有什么变化趋势?是递增的还是递减的呢?公差为负时呢?公差是不是可以为0呢?此时数列又如何变化呢?

  三、现在我们一起来探寻求等差数列通项公式的方法

  依据等差数列的定义可以得到

  a2-a1=d,a3-a2=d,a4-a3=d,……。

  所以a2=a1+d,a3=a2+d=a1+2d,a4=a3+d=a1+3d……,我们可以探寻等差数列的通项公式吗?

  我们可以猜测an=a1+(n-1)d 叫等差数列的通项公式

  引导学生推导出通项公式 这个公式大家通过前几项类推出来了,但这是我们的猜想,我们是否能给出这个公式严格证明呢?

  学生经过讨论:a2-a1=d,a3-a2=d,a4-a3=d,……,an-an-1=d 我们把上述n-1个式子累加起来,得到an=a1+(n-1)d.

  这是我们通过迭加法得到的,这种证法是严格的。这种方法以后我们还会经常用到。

  引导学生认识等差中项,要构成等差数列至少有几项组成呢?

  由三个数a,A,b组成的等差数列可以看成最简单的等差数列。这时,A叫做a与b的等差中项。

  在通项公式中变量有哪些?我们可以求哪些量?大家可以从正向看,也可以逆向去看这个公式。

  讨论后得到 an,a1,d,n中已知其中三个量可以求第四个量。

  三、我们来应用我们学习的等差数列知识,求解一些问题吧!

  用多媒体给出例题

  例1:(1)求等差数列8,5,2,……的第20项;

  (2)-401是不是等差数列-5,-9,-13,……的项?如果是,是第几项?

  解:(2)由a1=-5,d=-9-(-5)=-4,得到an=-5+(n-1)*(-4)=-4n-1,-400=-4n-1,

高三数学教学计划3

  一、学生在数学学习上存在的主要问题

  我校高一学生在数学学习上存在不少问题,这些问题主要表此刻以下方面:

  1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,潜力要求都是一次飞跃.这就要求务必掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析潜力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的构成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的资料还是高初中教材都不讲的脱节资料,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习.许多同学进入高中后,还像初中那样,有很强的依靠心理,跟随老师惯性运转,没有掌握学习主动权.表此刻不定计划,坐等上课,课前没有预习,对老师要上课的资料不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学资料。不明白或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

  4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

  5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是明白怎样做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。

  此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和潜力,对数学思想方法重视不够或掌握状况不好,缺乏将实际问题转化为数学问题的潜力,缺乏准确运用数学语言来分析问题和表达思想的潜力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。

  二、教学策略思考与实践

  针对我校高一学生的具体状况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得必须效果。

  加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划必须要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

  课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅仅能培养自学潜力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。

  上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们明白什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方能够一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

  及时复习是高效率学习的重要一环,透过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。

  独立作业是学生透过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的'考验,透过运用使学生对所学知识由“会”到“熟”。

  解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,透过点拨使思路畅通,补遗解答的过程.解决疑难必须要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

  系统小结是学生透过用心思考,到达全面系统深刻地掌握知识和发展认识潜力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,透过分析、综合、类比、概括,揭示知识间的内在联系.以到达对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”。

  课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作潜力,激发求知欲与学习热情。

  1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。

  再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样能够引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn.有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数能够在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮忙学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解状况列表,三角函数的图象与性质列表等,便于学生记忆掌握。

  2、讲。外国有一位教育家以前说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些状况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕能够完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能到达了自动化或半自动化的熟练程度。

  每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、构成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,能够将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不透过查表而求出精确值呢这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应用心、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。

  例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易理解。其次讲要注重突出数学思想方法的教学,注重学生数学潜力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。能够引导学生对照等差数列的相应的资料,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。

  3、练。数学是以问题为中心。学生怎样应用所学知识和方法去分析问题和解决问题,务必进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生透过认真思考能够完成。即让学生“跳一跳能够摸得着”。必须要让学生在练习中强化知识、应用方法,在练习中分步到达教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便能够变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师能够在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。个性是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多

  面性和深刻性。

  例如,高一(下)P26例5求证。能够从一边证到另一边,也能够作差、作商比较,还能够用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还能够利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一向角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。

  4、作业。鉴于学生现有的知识、潜力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习状况自主选取,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习状况,随时进行调整。

  5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学潜力、独立钻研精神和群众协作潜力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期带给学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人明白自己存在问题(越具体越好),老师对辅导学生状况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的潜力。

高三数学教学计划4

  一、内容及其解析

  1.内容: 正弦定理

  2.解析: 《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的学习内容,比较系统地研究了解三角形这个课题。《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。

  二、目标及其解析

  目标:(1)正弦定理的发现;

  (2)证明正弦定理的几何法和向量法;

  (3)正弦定理的简单应用。 解析:先通过直角三角形找出三边与三角的关系,再依次对锐角三角形与钝角三角形进行探讨,归纳总结出正弦定理,并能进行简单的应用。

  三、教学问题诊断分析

  正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。

  四、教学支持条件分析

  学生在初中已学过有关直角三角形的一些知识和有关任意三角形的一些知识, 学生在高中已学过必修4(包括三角函数与平面向量),学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型完成教学目标,是切实可行的'。

  五、教学过程

  (一)教学基本流程

  (一)创设情境,引出课题

  ①在Rt△ABC中,各边、角之间存在何种数量关系? 学生容易想到三角函数式子:(可能还有余弦、正

  a切的式子) bc sinC?1sinA?sinB?c b c

  ②这三个式子中都含有哪个边长? c学生马上看到,是c边,因为 sinC?1?B C a c③那么通过这三个式子,边长c有几种表示方法?

  abcsinAsinBsinC

  ④得到的这个等式,说明了在Rt△中,各边、角之间存在什么关系?

  (各边和它所对角的正弦的比相等)

  ⑥此关系式能不能推广到任意三角形?

  设计意图: 以旧引新, 打破学生原有认知结构的平衡状态, 刺激学生认知结构根据问题情境进行自我组织, 促进认知发展. 从直角三角形边角关系切入, 符合从特殊到一般的思维过程.

  (二)探究正弦定理 abc?

  ?猜想:在任意的△ABC中, 各边和它所对角的正弦的比相等, 即: sinAsinBsinC

  设计意图:鼓励学生模拟数学家的思维方式和思维过程, 大胆拓广, 主动投入数学发现过程,发展创造性思维能力.

  三角形分为锐角三角形、直角三角形和钝角三角形,对于直角三角形,我们前面已经推导出这个关系式是成立的,那么我们现在是否需要分情况来证明此关系式?

  设计意图:及时总结,使方向更明确,并培养学生的分类意识

  ①那么能否把锐角三角形转化为直角三角形来求证? ——可以构造直角三角形

  ②如何构造直角三角形?

  ——作高线(例如:作CD⊥AB,则出现两个直角三角形) ab?③将欲证的连等式分成两个等式证明,若先证明, sinAsinB那么如何将A、B、a、b联系起来?

  ——在两个直角三角形Rt△BCD与Rt△ACD中,CD是公共边:

  在Rt△BCD中,CD= a sin B , 在Rt△ACD中,CD= bsinA

  ab ??asinB?bsinA? sinAsinBbcsinB ? sinC?

  ——作高线AE⊥BC,同理可证.

  设计意图:把不熟悉的问题转化为熟悉的问题, 引导启发学生利用已有的知识解决新的问题.

  (四)目标检测

  小编为大家提供的高三上学期数学教学计划大家仔细阅读了吗?最后祝同学们学习进步。

高三数学教学计划5

  高三数学第一轮复习以抓基础,练基本功(主要是解题基本功)为主,注重对知识的梳理,数学方法的养成,使学生对整个高中数学知识、方法和思想有个完整的认识,形成网络。在本轮复习中应对高中数学的所有考点,涉及的解题方法进行全面的复习,使学生对每个知识点掌握到位,对数学概念的内涵和外延,公式定理的适用范围有着本质、透彻的理解,使学生切实掌握数学基本知识,基本技能和基本的数学思想方法,对基本的解题方法(解题方法的培养、训练要注重通性通法,淡化特殊技巧)能运用自如,做到稳扎稳打,基础过关,牢固。

  高三数学第二轮复习以专题复习、专题训练为主,注重学生数学能力与思维水平的养成,使学生在解题方法,解题技能上达到运用自如的境界。本轮复习中对高中数学重点内容要加深加难,重点培养学生解活题、较难题、难题的能力。专题复习既要按章节进行,又要按题型进行,按章节进行内容如下:函数与导数、数列(特别是递推数列)与极限、三角函数与平面向量、不等式、直线与圆锥曲线(注意圆锥曲线与向量的结合)、立体几何、概率与统计。按题型进行内容如下:选择题解法训练,填空题解法训练,解答题解法训练,特别要注重解答题训练的质量。

  本轮复习应多在知识网络的交汇处选题,强调学科内的小综合,加强对知识交汇点问题的训练,达到培养学生整合知识,能综合地运用整个高中数学思想方法解题的能力之目的。

  高三数学第三轮复习以强化训练、查漏补缺为主。在本轮复习中,让学生多做模拟题,强化做题的速度与质量。同时针对第一轮、第二轮的不足进行查漏补缺,特别是在第一轮、第二轮大多数学生做不出来的题目在本轮复习中可集中让学生重做,解决学生在前面复习中暴露的问题。

  具体措施建议如下:

  一、处理好课本与资料的关系对资料精讲,用好用巧,但不被资料束缚手脚,牵着鼻子走,不仅老师认真钻研资料,更要引导学生在复习课本的基础上认真钻研资料,用活用巧。

  二、分层教学由于数学分为文理科,且文理各有不同的层次,所以分层教学非常必要,计划对高三数学分为四层:理科A层、文科A层、理科B、C层、文科B、C层,各层实施不同的教学进度。其中理A、文A在重点抓好基础的同时适当加深难度与深度,其他层主要抓基础。

  三、抓好周练每周分层出一次周练,要求周练围绕上一周所授内容命题,题量适中,难易适当,针对性强,注重基础知识与方法的反馈训练。命题的主导思想是“出活题、考基础、考能力”。在周练的基础上,每章节复习过程中印发20xx年高考试题分章选解给学生课后完成。

  四、集体备课俗话说:三个臭皮匠顶得一个诸葛亮。在复习中充分发挥备课组集体力量,群策群力,科学备课。每周搞好一次备课组活动,讨论教学内容与教学方法的落实、改进情况。

  五、培养学生自学能力“授之以鱼,不如授之以渔”。对数学科而言,主要是对解题方法的点拨,解题思路的`引导,让学生自己学会抓住题目已知条件的关键点,寻找解题的突破口。避免课堂教学“一言堂”现象,要注重课堂教学的精讲多练,注重对学生思维能力的培养。

  六、培尖工作在强调名牌效应的今天,加强培尖尤其显得重要。特别是四个奥赛班,更要紧盯尖子生的学习状态。在复习过程中要选准苗子,培养他们良好的学习品质和学习习惯,培养他们较强的自学能力和应试能力,以及稳定的心理素质和良好的心态。对尖子生每次考试的试卷作好分析与针对性讲评。

  七、运用现代教育技术授课。多制作课件,用课件上课,让学生体验数学知识的发生、发展过程,让课件的动感感染每一个学生,使他们感知数学的美感。

高三数学教学计划6

  一、指导思想和教学目标

  以现代教育理论,教学大纲和考纲为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育。不仅使学生掌握高中数学基础知识与能力,而且要全方位培养学生的创新意识,创新精神,创新能力和实践能力,争取本学年我校高三数学教学上新台阶。

  二、教学计划与要求

  本学期为专题复习与综合考试相结合。要精选专题,紧扣高考内容,抓紧高考热点与重点,授课时脚踏实地,讲透内容;通过测评,查漏补缺,既提高解决综合题的分析与解题能力,又能调适心理,使学生进入一个良好的心理和竞技状态

  三、教材分析

  本学期教材:高中全部必修、选修教材。教辅资料:《名师一号专题复习大考卷》及衡水二轮复习资料.

  高考要求

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能 力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思

  想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  四、学情分析

  三班共有学生39人,四班共有学生37人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  五、具体方法措施

  1、进一步转变教育观念,真正做到面向全体学生,尊重学生的身心发展规律。

  不能因为是复习阶段而“满堂灌”,惟恐学生吃不饱,欲速则不达。在教学过程中处理好几个矛盾:一是讲和练的统一;二是量和内容的整合;三是自我探究和他人帮助的协调。每天采用有针对性的内容进行限时小剂量的过关练习,帮助差生争取基本分,学生可以解决,鼓

  励他自己完成,克服机械模仿带来的负迁移,同时增强信心。注意用分层教学来落实全体性与差异性。不能一个水平,一个内容,一个进度对待所有学生,既要求保底,又要大胆放飞。能达到什么水平就练什么水平的试题,保持这个水平是首要的,同时鼓励学生根据自己实际,大胆向前冲。对于基础较薄弱的学生,应多鼓励多指导学法。因为进入复习阶段,这些学生会无所适从,很容易产生放弃念头,教师的`关心与鼓励,是他们坚持下去的良药。

  2、加强学习,研究,注重学生、教材、教法和高考的研究,总结经验和吸取教训。

  进一步探索和研究考试中数学科备考方法和措施,认真研究近几年高考数学试卷,树立以教研求发展,向教改要质量的思想。

  3、加强常规教学的研究和管理。

  我们提出了“精细化的备课,精品化的授课,精选试卷”的要求。我们还要充分发挥各位数学教师的群体智慧,特别是有高考经验的教师。大家分工合作,多研究,多交流,既要集体备课又要主要配合不同班的差异,因材施教,根据数学科的特点,切实做到“一天一小练,一周一大练,一月一综合测”。这可以使学生提高解题能力,积累临场经验,发现问题,及时寻找补救措施,强化复习效果。

  4、做好辅导工作作为科任,关注所教学生各科学习成绩,从学生利益出发,制定适合的辅导计划。如各科成绩较平均,数学有潜力,就要指导与鼓励他们冒尖,这主要从精选综合题加强训练入手;若除

  了数学,其他科目都好的,就要利用课余时间,适当补课,当然,鼓励与调动其自身的学习积极性也是很重要的。

  5.认真落实月考,考前作好指导复习,试卷讲评起到补缺长智的作用。

  6.继续抓紧培优补差工作,让优等生开阔知识视野,丰富各种技能,达到思维多角度,解题多途径,效果多功能之目的。让弱科学生基础打牢,技能提升,方法灵活得当,收到弱科不弱之效果。 20xx年2月

高三数学教学计划7

  一、指导思想:

  研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

  二、高考要求:

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题和实际应用问题的考查。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  三、教学措施:

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、

  逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,充分发挥学生的.主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为: 小测试 → 典型例题 →变式训练→ 天天限时玩 → 课后检查。

  (1)小测试:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新颖,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析解决问题的能力。例题后面加上变式训练让学生学会灵活运用。

  (3)作业:本节课的基础问题,典型问题及天天限时玩。

  (4)课后检查:重点检查改错本及天天限时玩的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法

  的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强数学教学辅导的力度,坚持有针对性地集体辅导。

  7、合理安排复习中讲、练、评、辅的时间。

  (1)、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”。

  (2)、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果。

  (3)、注重实效,努力提高复习教学的效率和效益。

  五、教学进度:

  三月中旬完成第一轮复习,三月下旬及四月份进行第二轮专题复习,五月进行考前冲刺。

  总之,高考前的四个月是拼博的四个月,奋斗的四个月,出成绩的四个月,要严格的把握高考脉搏,以学生为主体,让每个学生在这四个月都有质的飞跃,在六月份的高考中创造新的辉煌!

高三数学教学计划8

  1.教学任务分析

  1.1 学情分析

  本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。

  1.2 教材分析

  1.2.1 教材地位和作用

  所用的教材是人教版《必修5》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。

  同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。

  1.2.2 教学任务和目标

  教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。以及具体的知识运用及实际应用。

  本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。其次体会研究等比数列通项公式简单归纳方法:特殊→一般,重温数学家发现数学概念和数学公式的思维活动过程,沿着数学家寻求真理的足迹,再现与前人类似的创造过程。

  教学目标:

  知识目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。

  能力目标:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的`能力,增强应用意识。

  品质素养目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。

  1.2.3教学重点和难点

  教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。

  教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。

  2.教材教法和学法分析

  教材的处理

  鉴于学生已基本上掌握数列概念,等差数列概念及通项公式(有利因素),但于由学生对教师,书本对于依赖,独立探索的信心和能力尚显不足(不利因素),故应稀释、放大、拉长等比数列概念的形成,展示深代过程和通项公式的推导过程,体现过程教学法。讲完课本例1、例2,例3,把等比中项的概念安排到第二课时教学。本节着重体现等比数列概念形成的过程及通项公式的推导与运用。

高三数学教学计划9

  一、指导思想

  以学校和高三年部的教学计划为目标,深入钻研教材及总复习大纲,依靠集体智慧处理教研、教改资源及多媒体信息。根据我校实际,合理运用现代教学手段、技术,提高课堂效率,全面提高数学教学质量,以确证学生在明年高考中取得好的成绩。

  二、目标要求

  1.深入钻练教材,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本学期重点为高考第一轮复习,为明年的下一轮复习以及高考打基础。

  3.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  4.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,最终提升学生的整体解题能力。

  三、教材分析

  本期教材:高中全部必修、选修教材及第一轮复习资料。

  教辅资料:《优化探究》。

  四、具体方法措施

  1.高质量备课,参考网上的课件资料,结合我校学生实际,充分发挥全组老师的集体智慧,确保每节课件都是高质量的'。统一教案、统一课件。

  2.高效率的上好每节课,真正体现学生主体、教师主导作用。保证练的时间,运用多媒资源,让学生对知识充分理解。

  3.狠抓作业批改、讲评,教材作业、练习课内完成,课外作业认真批改、讲评。一题多思多解,提炼思想方法,提升学生解题能力。

  4.认真落实月考,考前作好指导复习,试卷讲评起到补缺长智的作用。

  5.继续抓紧培优补差工作,让优等生开阔知识视野,丰富各种技能,达到思维多角度,解题多途径,效果多功能之目的。让弱科学生基础打牢,技能提升,方法灵活得当,收到弱科不弱之效果。

高三数学教学计划10

  3、改变课型,注意实效

  结合学校创建,开展三名、四课活动,有针对性地加强课堂教学内容方法、方式的改革,充分发挥学科指导组的作用,开展多种形式的课型,研究

  课型。

  如高一新教材的研究课、高二教学的概念引入课、高三专题复习的研究课等形式上有概念的.引入课,例习题课、讲解课、试卷评讲课、专题复习

  课、多媒体应用课等,以此为纽带带动各组的教研教改活动的开展,加强听课评课的监督与指导,改进教学方法,运用现代教学手段,提升教育理

  念,明确教育目的。

  提高教学质量,同时积极组织本组教师参加校级、区级、市级、省级的各类公开课,优质课评比、教案评比、五项技能比赛等,以此促进提高教师

  的综合素质,丰富教育教学经验。

  4、加强管理,落实常规

  根据教育教学的需要,结合学校要求,加强备、教、改、导、考、评、析的教学常规管理与检查。以备课组长、学科指导组为主体,对每位教师的

  教学情况进行逐一检查、监督、及时反馈、具体指导,对备课组的教学进度的安排,集体备课的落实,单元检测的组织等工作进行检查,使本组教

  学工作有条不紊,注重实效,各项教学工作全面提高。

  同时,根据学校的总体安排,结合学校的创建实际,积极参加学校组织的各项教研、教改、比赛等活动,认真准备,争取取得最佳的成绩,为参加上一级组织

  的相应的比赛,推荐最佳人选,为学校和数学组获得更大的荣誉.

  5、勤于总结,深化提高

  通过理论学习,常规培训,鼓励引导教师,结合教学实际,认真总结,积极思考,撰写有关方面的论文,如数学素质教育、创新教育的理论、探讨

  和实践探索、数学课程标准讨论、典型例题评析、高中新教材教学、教学艺术、教学访谈、教学活动课教学等内容。

  以此提高教师的理论素养和实践能力,真正提高教育教学质量。

高三数学教学计划11

  人教版高三数学上册教学计划

  该标准第一次大量引入了选修专题,这些专题内容新颖,对中学教师的教学提出了严峻的挑战。

  对称与群是其中专题之一,很多教师对本专题内容感到很陌生,无法进行教学。

  因此,高师生在走出校门之前能得到相关的高中选修课程学习是十分必要的。

  基于以上原因在高师生中作“对称与群”教学设计实验研究。

  本研究首先对贵州省少数民族地区高中教师和高师生作关于“对称与群”了解情况问卷调查,确定进行教学设计的必要性,然后根据对称与群自身具有的逻辑体系,采用现代教学设计的“系统设计法”,其中包括学习需要分析、教学内容分析、学习者分析、教学策略选择、教学过程确定、教学评价等环节。

  其次,本研究进行了“对称与群”这一选修专题的`试验班教学,对所作的教学设计的科学性、所编教材的有效性进行了实践检验,结果表明:

  “对称与群”教学设计方案是可行且有效的。

  同时,类比方法是学习“对称与群”最常用的方法;对学生的学业评价采用多种评价方式结合。

  最后对本研究出现的问题进行总结并提出对本研究的期望..……

高三数学教学计划12

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

  基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

  二、目标和目标解析

  (一)教学目标

  1.理解不等式的概念

  2.理解不等式的解与解集的意义,理解它们的区别与联系

  3.了解解不等式的概念

  4.用数轴来表示简单不等式的解集

  (二)目标解析

  1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

  2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

  3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

  因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

  五、教学过程设计

  (一)动画演示情景激趣

  多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

  设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

  (二)立足实际引出新知

  问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果.

  最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  .从速度方面考虑:x>50÷

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

  (三)紧扣问题概念辨析

  3.不等式的解集

  设问1:什么是不等式的解集?

  设问2:不等式的解集与不等式的解有什么区别与联系?

  由学生自学后再小组合作交流.

  老师点拨:不等式的.解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

  4.解不等式

  设问1:什么是解不等式?

  由学生回答.

  老师强调:解不等式是一个过程.

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?

  问题2:如果在数轴上表示 x≤ 75,又如何表示呢?

  由老师讲解,注意规范性,准确性.

  老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

  (五)归纳小结,反思提高

  教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题.

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

高三数学教学计划13

  根据学科特点,结合我校数学教学的实际情况制定以下教学计划:

  一、日常工作安排

  (一)组内分工安排与要求:我组共有教师13人,其中有三人任教两个班级,而其余10人各任教一个班级。本届高三共有9个理科班(4个强化班),5个文科班(2个强化班),1个体育班和1个艺术班。根据任课教师工作量的大小,将教师分成4组:xxxx,4组轮流备课,出午练、周练。

  (二)集体备课安排与要求:以征订的《南方凤凰台一轮复习导学案》为母本,在此基础上各任课教师结合集体备课时讨论的意见和自己所教班级学生的实际情况进行删、补。提前一周备课,每次4至5节内容。每位教师在上课的同时,要预备下周所教内容,然后在每周周二下午全组教师在办公室集中研讨,力求发挥集体智慧。主要是对上一周的教学进度、教学得与失进行总结,对下一周的教学内容、课标要求、课时分布、例题选讲,作业布置进行研讨。

  (三)午练安排与要求:每天中午12:15——12:45进行当堂训练,内容以近三天的教学内容为主,兼带已复习的教学内容中易错的、重点的知识,还有高考中简单的、必考的知识(如集合、算法、逻辑、概率、复数等),不出附加题,文理通用,通过滚动练习,从而达到夯实基础知识和基本技能的目的。根据教学内容的难易程度决定题量,基本控制在8题左右,其中简单题2-3题,中档题4-5题,提高题1题,尽量使普通班的学生能做对5-6题,强化班的学生基本能全部做完,并且做到当天批改,当天或第二天反馈,及时纠错。

  (四)周练安排与要求:一周一份练习,若放假,则在周日晚自习完成,班主任监考;若不放假,则在学校统一安排的数学时间内完成。教师必须在周一放学前将批好的试卷发给学生,周二尽可能讲评完。内容以上一届或本届各市模拟题为主,两位教师进行适当修改;当一章重点知识复习完后内容以这一章为主,作为单元复习检测。题量为十四道填空题,六道解答题,分值为160分,另外理科进行一次附加题的训练,题型安排与高考试卷相同,附加题试卷主要来自江苏省各个大市的模拟题。

  (五)教研安排与要求:周二下午安排一位教师开设公开课,其余教师听课,课后及时积极互评到位,评价要实事求是,不能只捡好的说。若周二下午部分教师参加区、市组织的教学研讨,则开课另做安排,参加活动的教师回来后积极传达研讨的内容和精神。

  二、教学进度安排计划

  文科:根据市教研室的要求,本学期在学期结束前必须完成一轮复习。

  理科:根据市教研室的要求,最迟在第二学期的开学三周内结束一轮复习。

  周次 教学内容 集体备课 主备人 午练 编制人 周练 编制人 开课教师

  一、二 完成四套综合模拟卷

  9.9~9.11 南京市高三第一次摸底测试

  三 集合的概念与运算

  四种命题和充要条件

  简单的逻辑联结词、全称量词和存在量词

  函数的概念及表示方法

  函数的定义域和值域

  四 函数的单调性

  函数的奇偶性

  函数的图像和周期

  二次函数、幂函数

  五 指数式与指数函数

  对数及其运算

  六 对数函数

  函数与方程

  函数模型及其应用

  导数的概念及运算

  曲线的切线

  七 用导数研究函数的单调性

  用导数研究函数的极值和最值

  导数的综合应用

  八 弧度制与任意角的三角函数

  同角三角函数关系式

  三角函数的诱导公式

  两角和与差的三角函数

  九 二倍角的'正弦、余弦和正切

  三角变换

  三角函数的图像和性质

  函数 的图像和性质

  十 期中考试

  十一 三角函数的模型及其应用

  正弦定理与解三角形

  余弦定理与解三角形

  解三角形的综合问题

  十二 平面向量的概念与线性运算

  平面向量的坐标运算

  平面向量的数量积

  复数

  十三 数列的概念

  等差数列

  等比数列

  数列的递推关系与通项

  十四 数列的求和

  数列的综合应用

  推理与证明

  数学归纳法(理科)

  十五 一元二次不等式(含分式不等式)

  简单的线性规划

  基本不等式及其应用

  十六 平面的性质与空间直线的位置关系

  线面平行与面面平行

  直线与平面的垂直、平面与平面的垂直

  空间几何体的表面积与体积

  十七 立体几何综合

  直线的基本量与方程

  两条直线的位置关系

  圆的方程

  十八 直线与圆、圆与圆的位置关系

  直线与圆的综合问题

  椭圆的方程

  椭圆的几何性质

  十九 双曲线

  抛物线

  直线与圆锥曲线的综合问题

  轨迹方程

  二十 算法

  统计初步

  古典概型

  几何概型及互斥事件的概率

  二十一 期末考试(一模)

高三数学教学计划14

  为了备战高考,合理而有效的利用各种资源科学备考,特制定计划如下:

  一、指导思想。

  研究新教材,了解新的信息,更新观念,探求新的教学模式,加强教改力度,注重团结协作,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

  二、学生基本情况。

  新的学期里,本人任教高三84、90班两个文科班的数学课,这些学生大部分基础知识薄弱,没有自主学习的习惯,自制能力差,上课注意力不集中,容易走神,课后独立完成作业能力差,懒惰思想严重,因此高三下学期的复习任务相当艰巨。

  三、工作措施。

  1、认真学习《考试说明》,研究高考试题,提高复习课的效率。

  《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

  2、教学进度。

  按照高三数学组学年教学计划进行,结合本班实际情况,进行第二轮、第三轮高三总复习,配合学校举行的月考和地区统考,并及时进行教学反思。

  数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结。如:反思总结解题过程的来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循;反思总结此题还有无其它解法;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。

  3、了解学生。

  通过课堂展示、学生交流互动、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教

  师的教最大程度上服务于学生。对于基础较薄弱的学生,应多鼓励、多指导学法,增强他们学下去的信心和勇气。

  4、精心备课。

  精心的备好每一节课,努力提高课堂效率,平常多去听同科教师的课,向老教师学习经验和好的教学方法,努力提高自己的任教能力。

  5、优化练习。

  提高练习的有效性:知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现。练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。

  练习的`讲评是高三数学教学的一个重要的环节,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生展示讲解,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,注重综合。选取“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。

  6、注重学习方法、数学方法的指导。

  《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。我们在复习中要加强数学思想方法的复习:如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

  针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,尤其是考后错题,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

  7、注意心理调节和应试技巧的训练。

  应试的技巧和心理的训练要从高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。

  附:第二轮复习进度表:(专题训练综合复习)

  第二阶段的综合复习是在前一阶段基础上的深化与提高,重点在沟通数学各知识体系之间的内在联系,提高综合运用数学知识和方法解决问题的能力。要求做到精选专题,紧扣高考热点和重点,加强针对性训练。

  I、知识专题:

  (1)、不等式、函数与导数:1、不等式的性质、解法和应用;

  2、基本不等式及其应用;

  3、线性规划;

  4、函数的图像和性质;

  5、函数与方程;

  6、导数的概念及其运算;

  7、;利用导数研究函数的性质;

  8、函数与方程、不等式的综合应用;

  9、不等式、函数的实际应用。

  (2)、数列:1、等差数列的通项、求和及其性质;

  2、等比数列的通项、求和及其性质;

  3、等差、等比数列的综合问题;

  4、数列应用。

  (3)、三角函数与平面向量:1、三角函数的化简与求值;

  2、三角函数的图像;

  3、三角函数的性质;

  4、向量的运算和应用;

  5、正、余弦定理的应用;

  6、三角函数、解三角形在生活中的应用 。

  (4)、解析几何:1、两条直线的位置关系;

  2、直线和圆的位置关系;

  3、圆锥曲线的定义和几何性质;

  4、曲线(轨迹)与方程;

  5、定点定值问题;

  6、最值、范围问题;

  7、圆锥曲线的综合问题。

  (5)、立体几何:1、三视图与直观图的转化;

  2、几何体的棱长、表面积和体积;

  3、空间直线、平面平行与垂直的判断、证明;

  4、立体几何中的探究性问题;

  5、展开与折叠问题。

  (6)、概率与统计:1、对抽样方式的理解与应用;

  2、数字特征与统计图表;

  3、用样本估计总体;

  4、古典概型;

  5、几何概型;

  6、变量间的相关关系与回归分析;

  7、独立性检验。

  II、题型专题

  (7)、高考数学选择题中的解题策略:

  1、直接法;

  2、特殊法;

  (特殊值、特殊函数、特殊数列、特殊位置、特殊方程以及特殊图形)

  3、图解法(数形结合);

  4、代入检验法(验证法);

  5、筛选法(排除法、淘汰法);

  6、推理分析法;

  7、估算法。

  (8)、高考数学填空题的解题策略:

  1、常规填空题的解法

  (直接求解法、特殊化求解法、数形结合法、等价转化法、构造法、特征分析法)2、开放性填空解题法

  (多选型填空题、探索性填空题、新定义性填空题、组合型填空题)

  III、阅读专题

  (9)、高考解题中的数学思想

  ①、函数与方程的思想

  1、利用函数与方程思想求解最值、范围问题;

  2、利用函数与方程的转化关系处理方程跟的问题;

  3、函数与方程中的变量转换思想;

  4、函数与方程思想在解决优化问题中的应用。

  ②、化归与转化的思想

  1、以换元法实现化归与转化;

  2、正向思维与逆向思维的转化;

  3、特殊与一般的转化;

  4、命题与等价命题的转化;

  5、函数、方程与不等式之间的转化。

  ③、分类讨论的思想

  1、由数学概念、运算引起的分类讨论;

  2、由图形或图像引起的分类讨论;

  3、根据公式、定理、性质的条件分类讨论。

  ④、数形结合的思想

  1、以数形结合的思想将代数问题化为几何问题;

  2、以数形结合的思想将几何问题化为代数问题;

  3、以向量为工具实现数形结合的最佳优化。

高三数学教学计划15

  一、教学安排

  第一轮全面复习已经进入尾声,立体几何与高三选修内容准备在3月20号左右结束,也就是第一次月考之前结束第一轮复习。

  第一轮结束之后,就开始专题复习,分三块内容:函数与导数、数列与不等式、解析几何。主要是一些典型例题和相应的配套练习,当然其中也包括其它未复习到的内容,如解析几何专题中的配套练习中包括立体几何、计数原理与复数、概率与统计。5月初开始综合训练,做一份与考一份,并且留时间让学生回顾与总结,看已经做过的综合试卷。5月底是考前指导。

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  离高考还只剩100天左右时间,学生基本上能够自觉地学习。大多数学生对基本知识掌握得还可以,但老大难问题还是经常出现,就是“会而不对,对而不全”。

  三、教学目的.要求

  掌握高中数学的基本知识与基本技能,能够解决一些数学问题。高考的时候大多数学生可以拿到基础分,难题也可以尝试拿点分。提高选择题与填空题的得分率,解答题前3题尽量拿到多数的分数,最后2题也要去得点分,而不能是空白。

  四、完成教学任务和提高教学质量的具体措施

  加强备课组的集体合作与交流,每周四开一次备课会议。专题复习与综合训练结合,留一定的时间让学生反思与总结,看已经做过的综合试卷。最后是考前指导。平时还注意与学生心理的沟通,经常与学生交流,加强心理辅导。

  五、教学进度

  略

【高三数学教学计划】相关文章:

高三数学教学计划02-14

高三文科数学教学计划04-04

高三数学教学计划(通用9篇)01-15

高三数学下学期教学计划02-21

高三第一学期数学教学计划03-11

高三上学期数学教学计划03-22

高三数学教师教学计划范文05-28

高三下期数学教学计划03-16

高三下册数学教学计划03-04

高三数学下学期教学计划13篇03-04