当前位置:育文网>教学文档>教学计划> 八年级上册数学教学工作计划

八年级上册数学教学工作计划

时间:2023-05-11 16:21:03 教学计划 我要投稿

八年级上册数学教学工作计划模板锦集六篇

  时间过得可真快,从来都不等人,又将迎来新的工作,新的挑战,做好计划,让自己成为更有竞争力的人吧。什么样的计划才是好的计划呢?下面是小编精心整理的八年级上册数学教学工作计划6篇,仅供参考,希望能够帮助到大家。

八年级上册数学教学工作计划模板锦集六篇

八年级上册数学教学工作计划 篇1

  特制定教学工作计划如下:

  一、学情分析:

  今年我任教初二1、2班两个班的教学,1班现有学生57人,十三班现有学生56人,经过一学年的学习,在学生所学知识的掌握程度上,从成绩看,优中差分化比较大,优生不突出,差生相对较多。学生的学习习惯也参差不齐。根据以上情况看,为了使优生更加突出,中等生尽快优化,差生尽快转化进步,本学期应以提高学生的学习积极性,促使优生拔高、提高差生的学习成绩和促进中等生优化为主要任务。

  二、教材分析:

  本学期教学内容:

  第一章:全等三角形;第二章:轴对称;第三章:实数;第四章:一次函数;第五章:整式的乘除与因式分解。

  三、教学目标及教学工作计划:

  教学工作目标:

  在今学期的数学教学中,争取期中、期末考试同科教师中名列前茅。

  (1)备课:

  按照学校要求、结合本学科实际充分做到既备教材又备学生。课时备课要从学生实际出发,站在学生的角度上考虑,教案要备深、备细,突出实用性。总领课、新授课、复习课、讲评课等各种课型要齐全。根据要求做到“四落实”即知识点落实、教法落实、检测手段落实、反馈措施落实。备课要体现出电教手段的使用。做到提前备课。充分发挥好集体备课和周二的分科学习的作用。

  (2)上课:

  严格按照“双线教学整体推进”模式的.环节授课,让学生更多的思考、更多的探索、更多的说和做,使教学最大限度地满足学生个体差异,实现课堂教学的高质量和高效率,立足课堂以学为主,积极推行新理念高效课堂。向四十五分钟要质量。

  (3)测试与反馈矫正:

  在教学中要利用好测试这一手段,要通过考试帮助学生寻找差距和造成差距的原因,明确努力方向。在讲评中进行纠错、总结、深化,激励学生向更高的目标迈进。及时掌握学生的学习情况,找出薄弱环节,及时弥补缺漏。根据达标测试的情况写出质量分析。

  四、具体落实措施:

  1、加强学习,取他人之长补己之短,提高自身素质。

  2、落实常规,脚踏实地,干好自己的本职工作。

  3、大胆探索,敢于创新。

  4、加强课堂教学改革,利用各种教学手段,提高学生学习兴趣。培养学生的自觉学习、主动学习、创新学习的好习惯。

  5、加强单元、课时备课,在吃透教材的基础上备教材、备学生,为上好每一堂课做好充分准备。

  6、在教学中注意分类指导,根据学生的基础分类讲解,分类检测。

  五、教学进度

  周次、时间、教学内容;

  第一周9.1-9.5全等三角形;全等三角形判定2

  第二周9.6-9.12全等三角形判定3、4

  第三周9.13-9.19角平分线性质,单元检测

  第四周9.20-9.26轴对称,作轴对称图形

  第五周9.27-10.3用坐标表示轴对称,等腰三角形判定

  第六周10.4-10.10等腰三角形性质,等边三角形性质判定

  第七周10.11-10.17等边三角形判定,数学活动

  第八周10.18-10.24单元测试,平方根

  第九周10.25-10.31立方根,实数

  第十周11.1-11.7期中复习

  第十一周11.8-11.14期中考试期中考试

  第十二周11.15-11.21变量与函数,正比例函数

  第十三周11.22-11.28一次函数

  第十四周11.29-12.5用函数观点看方程组与不等式

  第十五周12.6-12.12课题学习,数学活动

  第十六周12.13-12.19整式的乘法

  第十七周12.20-12.26乘法公式,同底数幂的除法

  第十八周12.27-1.2整式的乘法,提公因式法因式分解

  第十九周1.3-1.9公式法因式分解,数学活动

  第二十周1.10-1.16期末复习

  第二十一周1.17-1.23期末考试

八年级上册数学教学工作计划 篇2

  一、教学目标

  (一)知识目标

  1.会用计算器求平方根和立方根.

  2.经历运用计算器探求数学规律的活动,发展合情推理的能力.

  (二)能力训练目标

  1.鼓励学生能积极参与数学学习活动,对数学有好奇心与求知欲.

  2.鼓励学生自己探索计算器的用法,并能熟悉用法.

  3.能用计算器探索有关规律的问题,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  (三)情感与价值观目标

  让学生经历运用计算器的活动,培养学生探索规律的能力,发展学生合理推理的能力.

  二、教学重点、难点

  1.探索计算器的用法.

  2.用计算器探求数学规律.

  三、教学方法

  学生自主探究法.

  四、教学过程

  (一)新课导入

  我们在前几节课分别学习了平方根和立方根的`定义,还知道乘方与开方是互为逆运算. 比如23=8,2叫8的立方根,8叫2的立方,有时可以根据逆运算来求方根或平方、立方.对于10以内数的立方,20以内数的平方要求大家牢记在心,这样可以根据逆运算快速地求出这些特殊数的平方根或立方根,那么对于不特殊的数我们应怎么求其方根呢?可以根据估算的方法来求,但是这样求方根的速度太慢,这节课我们就学习一种快速求方根的方法,用计算器开方.

  (二)新课讲解 【师】请大家互相看一下计算器,拿类型相同的计算器的同学请坐到一起.这样便于大家互相讨论问题.如果你的计算器的类型与书中的计算器的类型相同,请你按照书中的步骤熟悉一下程序,若你的计算器的类型不同于书中的计算器,请拿相同类型计算器的同学先要探索一下如何求平方根、立方根的步骤,把程序记下来,好吗?给大家8分钟时间进行探索.

  五、课堂小结

  1.探索用计算器求平方根和立方根的步骤,并能熟练地进行操作.

  2.经历运用计算器探求数学规律的活动,发展合情推理的能力.

八年级上册数学教学工作计划 篇3

  在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。

  一、教学目标

  1.使学生理解分式方程的意义.

  2.使学生掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程解的检验方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的`转化思想.

  二、教学重点和难点

  1.教学重点:

  (1)可化为一元一次方程的分式方程的解法.

  (2)分式方程转化为整式方程的方法及其中的转化思想.

  2.教学难点:检验分式方程解的原因

  3.疑点及分析和解决办法:

  解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

  三、教学方法

  启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

  四、教学手段:

  演示法和同学练习相结合,以练习为主.

  五、教学过程

  (一)复习引入

  1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.

  使方程两边相等的未知数的值,叫做方程的解.

  (二)新知探索

  板书课题:分式方程的定义.

  分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)

  (三)作业布置

  必做:课本82页,习题3.7,A组第1、2题。

  选作:课本82页,习题3.7,A组第3题;B组第1题。

八年级上册数学教学工作计划 篇4

  多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

  一、内容和内容解析

  本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

  勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

  学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

  本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

  二、教学目标及目标解析

  1、教学目标

  ①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

  ②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

  ③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

  ④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

  2、目标解析

  ①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

  ②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

  ③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

  ④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

  三、教学问题诊断分析

  学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

  对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

  四、教学支持条件分析

  根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.

  五、教学过程设计

  (一)创设情境,导入新课。

  问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

  教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

  【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.

  方案1:如果学生能够说出勾股定理的相关知识,则直接

  进入下一环节的学习。

  方案2:如果学生有困难,则安排学生自学教材,再发表意见。

  学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

  【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

  (二)观察演算,合作探究,初具概念

  问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

  教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

  【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

  问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

  教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

  【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

  问题5:你是怎样演算的?

  教师关注学生之间的交流,关注学生借助面积法探究问题的.不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

  视学生的学习情况确定下步的教学:

  方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

  方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

  【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

  问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

  学生描述,教师板书。

  【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。

  (三)引导实验,探究论证,形成体系。

  问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

  教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

  【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

  问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

  学生或小组间进行合作实验,共同协作探究;教师巡视指导。

  【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

  问题9:教师选取代表性的拼接方法,全班展示。

  【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

  (四)归纳提高,巩固运用,形成能力。

  问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

  学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

  【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

  问题11:完成以下练习题

  教材69页第1题、

  学生独立完成;教师巡视指导,板书得数,介绍勾股数。

  【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

  (五)归纳小结,反思提高

  问题12:通过本节课的学习,你有哪些收获?

  学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

  【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

  小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。

八年级上册数学教学工作计划 篇5

  一.指导思想

  通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

  二、学情分析

  八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

  我校七年级下学期学生期末考试的成绩平均分不是很好,总体来看,成绩很低。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

  三、教材分析

  第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的.特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

  第十二章轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

  第十三章实数主要介绍了平方根、算术平方根、立方根实数的概念。理解乘方与开方之间是互为逆运算的关系。了解无理数和实数的概念,知道实数和数轴上的点一一对应。能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算。

  第十四章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

  第十五章整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

  四、教学措施

  1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

  2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

  3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

  4、不断改进教学方法,提高自身业务素养。

  5、教学中注重自主学习、合作学习、探究学习。

八年级上册数学教学工作计划 篇6

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的`最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式 , , 通分:

  最简公分母为: ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

【八年级上册数学教学工作计划】相关文章:

数学八年级上册教学工作计划03-31

八年级数学上册教学的工作计划03-01

八年级上册数学教学总结01-06

八年级上册数学教学反思04-16

八年级上册的数学教学计划03-04

八年级上册数学教学总结01-24

八年级上册数学教学工作计划02-23

数学八年级上册教学工作计划15篇03-31

八年级数学上册教学工作计划07-06

八年级数学上册教学的工作计划15篇03-01