当前位置:育文网>教学文档>说课稿> 高一年级上册数学说课稿

高一年级上册数学说课稿

时间:2023-12-10 07:57:10 说课稿 我要投稿
  • 相关推荐

高一年级上册数学说课稿

  作为一位优秀的人民教师,总不可避免地需要编写说课稿,通过说课稿可以很好地改正讲课缺点。我们应该怎么写说课稿呢?下面是小编整理的高一年级上册数学说课稿,希望能够帮助到大家。

高一年级上册数学说课稿

高一年级上册数学说课稿1

  一、教材分析

  1、教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  (根据具体的课题改变就行了,如果不是热点难点问题就删掉)

  2、教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的'能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

高一年级上册数学说课稿2

  一、教材分析

  1.教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。

  2.教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识与能力:

  (1)了解柱体、锥体、台体的表面积.

  (2)能用公式求柱体、锥体、台体的表面积。

  (3)培养学生空间想象能力和思维能力

  过程与方法:

  让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。

  情感、态度与价值观:

  通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。

  3.重点,难点以及确定依据:

  本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  教学重点:柱,锥,台的'表面积公式的推导

  教学难点:柱,锥,台展开图与空间几何体的转化

  二、教法分析

  1.教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。

  2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  三、学情分析

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  四、教学过程分析

  (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性

  (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。

  (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。

  (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (5)例题及练习,见学案。

  (6)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高

  (7)小结。让学生总结本节课的收获。老师适时总结归纳。

高一年级上册数学说课稿3

  一、教材分析

  1.教材背景

  作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时

  第一课时介绍曲线与方程的概念;

  第二课时讲曲线方程的求法;

  第三课时侧重对所求方程的检验.

  本课为第二课时

  主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.

  2.本课地位和作用

  承前启后,数形结合

  曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.

  “曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.

  后继性、可探究性

  求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.

  同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.

  数学建模与示范性作用

  曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.

  数学的文化价值

  解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.

  3.学情分析

  我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知XX.

  二、目标分析

  1.教学目标

  知识技能目标

  理解坐标法的`作用及意义.

  掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.

  过程性目标

  通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.

  通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.

  通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.

  情感、态度与价值观目标

  通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.

  展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.

  2.教学重点和难点

  重点:求曲线方程的方法、步骤

  难点:几何条件的代数化

  依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.

  曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.

  三、教学方法及教材处理

  1.教学方法:探究发现教学法.

  遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.

  2.学法指导

  学生学法:互相讨论、探索发现

  由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.

  这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.

  3.设计理念:

  求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念.

  四、教学过程(教学设计)

  根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点.本课的教学设计思路是:

  创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知XX,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法.

  例题探求——例题一体现知识的承前启后.通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教.至此,学生已能初步了解求曲线方程的一般方法和步骤了.

  归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标.

  变式练习、通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯.

  反馈练习、利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程.全面完成教学目标.

  4.高一年级上册数学说课稿

  教材分析:

  函数作为高中的重点知识有着广泛的应用,与其他数学内容有着有机联系。课本选取探究具体的一元二次方程的根与其对应的二次函数的图像与横轴的交点的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系。本节设计特点由特殊到一般,由易到难,这符合学生的认知规律。课堂体现的数学思想是“数形结合”和“转化”思想。充分体现了函数图像和性质的应用。因此把握课本要从三方面入手:新旧知识的联系,学生认知规律,数学思想和方法。

  学情分析:

  1、现有知识储备:

  (1)常用函数的图像和性质

  (2)常见方程的解法;

  (3)函数的图像变换

  2、现有能力特征:具有一定归纳、概括、类比、抽象思维能力

  3、现有情感态度对高次或超越方程的解法具有强烈求知欲和渴望探究的积极情感态度教学目标:

  知识与技能:

  (1)结合二次函数的图像,掌握函数零点的概念,会求简单函数的零点

  (2)理解方程的根和函数零点的关系

  (3)理解函数的零点存在的判定条件,能利用函数性质判定方程解的存在性

  过程与方法:通过本节的学习让学生掌握由“特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界

  情感态度与价值观:在函数与方程的联系中体验数学中的转化思想和函数思想的意义及价值教学重点:理解方程的根与函数零点的关系,体会函数与方程的思想,掌握方程解的存在性的判定方法。

  教学难点:方程解的存在性的判定。

  重、难点突破措施:

  (1)由熟到生,以情激人

  创设情境中,由熟到生解方程开题,扣人心弦,层层探究,步步为营,丝丝入扣,激发热情。

  (2)数形结合,分类讨论

  通过简单实例,数形结合,探究总结规律;利用分类讨论的数学思想突破重难点。

  (3)合作探究,分层提高

  利用合作探究、分层训练和分层作业达到因材施教的效果。