有理数的乘方说课稿通用【7篇】
在教学工作者实际的教学活动中,通常会被要求编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的有理数的乘方说课稿,希望能够帮助到大家。
有理数的乘方说课稿1
一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的'过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
九、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
有理数的乘方说课稿2
教材背景:
本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现"把一个因数换成它的相反数,所得的积是原来积的相反数"、接着安排了"试一试"让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及—1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。
知识目标:
掌握有理数的乘法法则并会运用它进行计算。
能力目标:
学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。
情感目标:
会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。
两个有理数相乘的符号法则和有理数乘法法则的得出及应用。
从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。
因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的'思维训练题组A与思维训练B、
遵循新教改提倡的"以学生为主体"的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了"发现、探究法""分层递进法""分组学习""合作与交流"等有利于学生学习教法与学法。
多媒休课件
(一)看公益广告,渗透环保思想,引入新课。
1、复习简单的算术数乘法
(1)计算48×1/2, 5/12×3/5,(2)全世界每分钟砍伐森林30公顷,平均每年减少的雨林面积为750万公顷。50年后全世界将减少雨林面积多少公顷?
(引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)
(3)你会计算(—3)×(+2),(—3)×(—2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。
(二)创设问题情景,建立数学模型,探究新知。
1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定
(1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?
(2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?
从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(—100)×2=—200。
2、把问题1中的"老虎从东西两个方向以每分钟100米的速度前进"改为"一只小虫从东西方向的跑道以每分钟3米的速度前进",结果有何变化?大家写出算式:(+3)×(+2)=6,(—3)×(+2)=—6比较这两个算式,有什么发现?
当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"—3",所得的积是原来积"6"的相反数"—6"、再看上一题得到的算式100×2=200,(—100)×2=—200,一般地, "一个因数换成它的相反数所得的积是原来积的相反数"。
3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(—2),(—3)×(—2),(—3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。
4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零"、随后应用此法则计算,讲解课本上的P51例题。
例1(1)(—5)×(—6);(2)(—1/2)×1/4;并补充(3)
解:(1)(—5)×(—6)=+(5×6)=30;
(2)(—1/2)×1/4=—(—1/2×1/4)=—1/8;
(3) =—(5/3×12/5)=—4
强调学生应用乘法法则时注意两点
(1)先确定积的符号
(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。
(三)小组交流,练习巩固,演绎应用所学的知识。
让同学做书上的配套练习P52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。
(四)分层次思维训练,使不同的学生得到不同的发展。
有理数的乘方说课稿3
各位领导、各位老师:
上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。
今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。
一、 教材分析
1、教材的地位与作用:
有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
2、教学目标:
根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:
让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:
在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:
让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
3、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
二、教法学法
1、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的.兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
2、教学策略:
根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
三、教学过程
1、设置游戏,引入新课:
首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。
游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: × × × × ;
游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;
最后引导学生思考这两个算式的特点,引入新课。
这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。
2、合作交流,探索新知:
先让学生分组讨论下面算式特点:① × × × × ,②2×2×2×2×2,③(—3)×(—3)×(—3)×(—3),④(—0、3)×(—0、3)×(—0、3)
接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a 。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。
n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。
3、迁移训练,总结规律:
在这个环节中,我首先要求学生把算式①﹙—4﹚×﹙—4﹚×﹙—4﹚,②﹙—2﹚×﹙—2﹚×﹙—2﹚×﹙—2﹚,③﹙— ﹚×﹙— ﹚×﹙— ﹚,④﹙— ﹚×﹙— ﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。
本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。
4、应用新知,尝试练习:
本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙—2﹚ 、—2 、﹙ ﹚ ,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙—2﹚ 与—2 ,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。
第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。
5、归纳小结,形成体系:
首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。
四、设计说明
本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。
有理数的乘方说课稿4
我说课的'内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:
一、 教材分析:
1、 教学内容:
本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。
2、 教材地位和作用:
“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。
二、 教学目标:
1、 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。
知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。
2、 教学重难点:
本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。
三、 教法与学法:
1、 教法:
采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。
2、 学法:
事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。
四、 教学过程分析:
1、 导入过程:
利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。
2、 探索新知过程:
首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。
对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:
例1是两个数相乘的',(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;
例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。
对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。
3、 随堂练习:
在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。
4、 小结:
以提问的形式大致回顾本节所学的内容,主要问了三个问题:
(1) 这节课我们主要学习了些什么内容?
(2) 有理数的乘法法则是什么?
(3) 什么样的数互为倒数?
5、 作业:
作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。
6、 自我评价:
这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。
当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。
另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
有理数的乘方说课稿5
我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法"、第一课时。我将从以下四个方面谈一谈这节课的教学设计。
一、教材分析
(一)教材的地位与作用
本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。
(二)教学目标分析
1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。
2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。
3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。
(三)教学重、难点及成因分析
教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。
教学难点定为:有理数的乘法法则的探索和对法则的理解。
为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。
二、教法、学法分析
(一)、学情分析
1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
(二)、教法分析
《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。
(三)、学法指导
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
三、教学过程分析
我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:
1、直接提出问题:你能给出下列各式的结果吗?
(1)2×3=x;(2)(—2)×(—3)=x;(3)2×(—3)=x;(4)0×(—4)=x、
这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。
2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。
(二)自主探究,归纳结论
根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。
1、出示问题 ,建立模型
问题1、 议一议
(—3)×4= —12
(—3)×3=
(—3)×2=
(—3)×1=
在出示问题,建立模型这一环节,先提出问题1、 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。
1、把乘法转化成加法(链接);
2、利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。
问题2:①你知道(—3)×0的结果吗?
②如何用水位的变化来解释(—3)×0= 0 ?
通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。
问题3、认真观察上述5个算式,其中包含什么规律?
此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。
1、观察算式的左边,找出变化的因数和不变的因数;
2、观察算式的右边,找出积的变化规律;
3、要求学生在独立思考之后,将两边的变化规律总结成一个结论。
即:一个因数不变,另一个因数每次减小1、算式右边的积每次增加—3。
上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的'问题4打下坚实的基础。
2、 独立思考,探索规律
问题4、猜一猜
(—3)×(—1)=
(—3)×(—2)=
(—3)×(—3)=
(—3)×(—4)=
由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 、根据上述规定,我先让学生说一说这4个算式的实际意义,如(—3)×(—1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。
这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。
问题5、你能猜出 3×(—2)的结果,并解释理由吗?
通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。
本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。
接着我引导学生进入第三步:归纳总结,得出法则。
3、归纳总结,得出法则
完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:
由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。
通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。
(三)知识运用,加深理解
1、运用法则进行计算
在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘
可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。
(四)变式训练,拓展思维。
通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。
(五)回顾反思,感悟提升。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
(六)布置作业,延伸知识。
数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:
分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。
四、教学反思
最后,对这节课我做了如下的反思:
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
有理数的乘方说课稿6
教学内容分析:
《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
教学目标分析:
(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;
(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法
(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点
教学重点:理解乘方定义,会进行有理数的乘方运算;
教学难点:有理数乘方运算的符号法则的.形成与运用
教法学法分析:
教法:启发式教学,多媒体辅助教学;
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题
(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫
2、自主探索形成新知
观察下列各式有何特征?
(1)2×2×2×2=
(2)(-3)×(-3)×(-3)=
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知巩固概念
练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算
4、探索研究发现规律
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知巩固训练
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力
6、拓展思维知识延伸
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结归纳反思
锻炼学生及时总结的良好习惯和归纳能力
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;
(1)关注学生的智力参与度
(2)学生的课堂参与度
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
有理数的乘方说课稿7
一、教学目标:
知识目标:让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
能力目标:在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
情感目标:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。经历知识的拓展过程,培养学生探究的.能力和动手操作的能力,体会与他人合作交流的重要性。
1、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
2、教学难点:
有理数的乘方符号法则的理解。
二、说教学方法
启发诱导式、实践探究式。
三、说教学设计
(一)创设问题、引入新知
a(1)边长为2的正方形的面积是多少?
(2)棱长为2的正方体的体积是多少?
(3)学生活动:
我们把一张纸对折后裁开,可以裁成几张纸?对折两次后可以裁成几张纸?对折三次呢?
猜想对折10次后可以裁成几张纸?
对折20次后的纸张的厚度比我们大唐发电厂的烟囱的高度还高,你信吗?
学完这节课后,你就知道结果了。
(让学生思考回答、教师引导、归纳同时板书问题答案)
学习新知:
(二)、自主学习新知:
1、阅读书了解什么是乘方?还有那些新的概念?
2、同学们想一想?以上乘法与前面学习过乘法有什么不同?
(让学生观察回答,教师引入乘方、幂、底数、指数的概念、归纳同时板书问题答案)
板书:求n个相同因数的积的运算叫做乘方。
乘方的结果叫做幂。
一个数可以表示成这个数本身的一次方,指数1通常省略不写。
3、提出问题:到目前为止,对有理数来说,我们学过的运算有哪些?分别是什么?运算结果叫什么?(让学生讨论交流回答,教师板书问题答案)。
板书答案:
运算:加、减、乘、除、乘方
结果:和、差、积、商、幂
4、检验学习:
在这里,我设置了三组题,第一组学生组内完成,采用组内互检方式完成。
第二三组题先由学生独立完成,在由组长检查,并让两名学生到黑板上展示交流,教师给予点评。
(三)探究乘方的符号法则
设置了四组习题探究规律:
1、完成下面的计算:
22= 32= 43 = 104=
(-3)2= (-2)4= (-3)4=
(-3)3= (-10)3= (-2)5=
02= 03 = 04= 06=
2、思考:根据上面计算的结果想一想:正数的幂的符号与指数有何关系;负数的幂的符号与指数有何关系?
师生总结:正数的任何次幂都是正数;0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
板书结论:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0
(四)学习使用计算器计算乘方的方法。
1、每组一个计算器,教师讲解,学生操作。
2、解决引例折叠20次后纸张的厚度。如果一张纸的厚度为0.2毫米,试用计算器求出结果。
(五)小结反思
通过这节课的学习,你有什么收获?你还有什么疑惑?
课堂检测、布置作业。
(目的:为巩固本节所学的知识,了解学生掌握知识的情况及应用知识的能力。)
【有理数的乘方说课稿】相关文章:
有理数乘方说课稿07-08
有理数的乘方说课稿01-14
有理数乘方说课稿3篇12-29
有理数的乘方的教案08-26
有理数的乘方教案02-14
有理数乘方教学反思04-22
有理数乘方的教学反思04-22
有理数的乘方教学反思02-19
有理数的乘方的教案11篇02-26
七年级数学有理数乘方说课稿03-05