当前位置:育文网>教学文档>说课稿> 《比的基本性质》的说课稿

《比的基本性质》的说课稿

时间:2024-05-24 13:29:44 说课稿 我要投稿

《比的基本性质》的说课稿

  作为一名优秀的教育工作者,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写说课稿呢?下面是小编帮大家整理的《比的基本性质》的说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《比的基本性质》的说课稿

《比的基本性质》的说课稿1

  一、教材分析

  1、教材所处的地位和作用:

  不等式基本性质是八年级下册第二章第二节内容。不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。本节课的教学指导思想是从学生实际认知水平及知识结构出发,让学生自主获取知识。

  二、教学目标

  (1)知识与技能

  1、经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

  2、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。(2)过程与方法:

  1.经历探索不等式基本性质的过程,体验数学学习探究的方法

  2.通过观察、类比、猜想、验证、归纳总结等数学学习活动过程,发展合理的推理和初步论证能力(3)情感态度与价值观:

  1.学生在探索过程中感受成功、建立自信,增进学习数学的兴趣。

  2.体验在研究过程中创造的快乐,并学会与人交流合作养成良好的人格品质

  3、重点、难点及关键

  重点:不等式基本性质的探索及应用难点:不等式的基本性质三的探索及其应用

  三、教法学情分析:

  1、学生在学习一元一次方程、二元一次方程组和一次函数的基础上,积累了一定的经验,本节课主要采用类比等式的方法进行不等式的探究教学,这样不仅有利于学生掌握不等式的基本性质,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辩证思维。

  2、始终坚持学生为主体,教师为主导的教学方法,通过教师的启发,设问,引导学生自主探索、合作交流,师生充分互动,这样才能将学生推到学习的前沿,才能充分发挥学生的学习主体性和主观能动性。

  3、在探索不等式的性质时为了避免简单的“模型化”,主要采用引导学生观察、类比、猜想、验证、总结概括的方法,发展学生分析问题和解决问题及初步论证问题的能力,关注学生知识的形成和学习能力的提高。

  学法指导

  1、观察猜想

  2、类比验证

  3、探究合作

  4、抽象概括

  5、总结归纳

  6、数学表示

  四、说教学过程

  最后我来具体谈谈这一堂课的`教学过程:

  (一)、回顾交流,指导观察

  教师提问:同学们还记得等式的性质吗?学生举手回答,交流联想。投影显示:等式的性质

  设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。

  (二)、知识探究

  1、用“﹥”或“﹤”填空,并总结其中的规律:

  (1)5>3, 5+2 3+2 , 5-2 3-2 ;

  (2)–1、>(2)

  不等式的性质1不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为:如果a>b,那么a±c > b±c设计意图:通过一组精心设计的填空题,让学生观察有限个不等式的变化,发现并归纳不等式的性质1,进一步培养学生得抽象概括能力及合情推理能力。让学生用语言概括出结论,培养学生的数学语言表达能力及抽象概括能力。

  2、继续探究,接着又出示(3)、(4)题:

  (3) 6>2, 6×5 2×5 , 6×(-5)2×(-5); (4) -2

  当不等式的两边同乘以一个正数时,不等号的方向不变;当不等式的两边同乘以一个负数时,不等号的方向改变。

  (1)3a 3b;(2)a-8 b-8(3)-2a -2b(4)2a-5 2b-5(5)-3.5a+1 -3.5b+1设计意图:由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。 (五)、例题讲解及运用巩固(多媒体展示)例题:将下列不等式化成x>a或x<a的形式(1)x-5>-1(2)-2x>3类比等式基本性质的应用,师生共同板演完成(注意有意强化在(2)题的结果中不等号的方向为什么会改变?)

  2、尝试练习一(学生板演)(要求同例题)(1)x-1>2(2)-x<3

  (3)x≤3

  3、巩固练习二(要求同例题)小组内交流并订正

  (1)x+3<-1

  (2)3x>27(3)- 6x>5(4)5x<4x-6(通过练习,进一步巩固性质,突出重点)通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。设计意图:让学生经历运用知识解决问题的过程,给学生获得成功体验的空间,激发学生得积极性,建立学好数学的自信心。

  4、抢答提升,强化性质

  已知x>y,下列不等式一定成立吗?

《比的基本性质》的说课稿2

尊敬的各位领导,老师们:

  大家好!今天我很荣幸能够在这里向大家展示我精心准备的说课内容——《分数的基本性质》。接下来,我将从以下几个方面进行详细的说明。感谢大家的聆听!

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的资料。本节课资料是在分数的好处,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节资料将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材资料及学生的认知水平,我制定了以下教学目标:

  1、使学生理解与掌握分数的基本性质。

  2、培养学生观察、比较、分析、概括等方面的潜力。

  三、教法和学法(课件)

  为了让学生更好地参与课堂,我充当着引导者和组织者的角色,巧妙地设计情境设问、观察发现和小组合作等教学方法。我努力让学生成为课堂的主人,促使他们积极思考、互相合作,从而更好地掌握知识和技能。

  新课程标准强调了过程的重要性,强调学习数学不能仅仅依靠模仿与记忆。因此,我会通过引导学生进行动手操作、自主探究和组织游戏比赛等形式来进行教学,让他们更好地理解数学知识。

  四、教学过程(课件)

  结合五年级学生的理解潜力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、猴山上的猴子们都喜欢吃猴王做的香甜饼干。一天,猴王做了三块同样大小的饼干。猴王把第一块饼干平均分成了两块,给了猴1一块。(图片)猴2看到了,馋得口水直流:“猴王,猴王,我也要两块。”猴王笑着说:“好的,好的,给你两块。”于是,猴王将第二块饼干平均分成了四块,把两块给了猴2。(图片)猴3更贪心:“我要六块,我要六块。”猴王想了想,拿出第三块饼干,将它平均切成了十二块,果然给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  (二)、动手操作、初步感知(课件)

  学生拿出了三张准备好的圆片,代替猴王做的饼,按照折、画、涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生开始观察和比较这三个图形。通过多媒体的直观演示,学生更加明确三只猴子分得的饼确实一样多。有了实物的直观比较,学生逐渐理解了三个分数大小相等的道理。但是为何分数的分子、分母不同,大小却相等?这个问题激发了学生的好奇心。这个情境的设置主要是让学生在动手操作中复习分数的知识,为引入新知识做好铺垫,并激发他们的求知欲。这样的设置能够充分利用学生喜欢动手和直观思维的特点,营造出良好的学习氛围。接下来,我会根据这个情境引入新的.知识。

  (三)比较归纳、揭示规律(课件)

  (1)在板书完这组分数后,我让学生观察并思考:从左往右看,分子和分母分别是如何变化的?我鼓励他们独立思考,然后在小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我听了笑而不语,鼓励他们逐一验证各种猜想是否具有规律性。直到一些学生发现分数的分子和分母同时乘了2和3时,我及时给予肯定和表扬。为了突破重难点,我设计了一道填空题,引导学生概括这一发现,并让多名学生分享。这样的设计不仅培养了学生的概括能力,也增强了他们的信心。在此基础上,我布置了一个任务:从右往左看,又有什么规律?有了前面的经验,学生很快得出结论:分数的分子和分母同时除以一个相同的数,分数的大小也不变。

  (2)学生沉浸在成功的喜悦中,我突然提出一个问题:如果分数的分子和分母同时乘以或除以0,会得到什么结果?学生们恍然大悟:0不能作为除数。

  (3)最后,我建议学生用简洁的语言总结这两个发现,与老师一起完善规律。然后我会在黑板上写下本节课的主题——分数的基本性质,让学生清楚地了解本节课的教学重点。

  (4)学生们通过这个故事明白了聪明的猴王利用了数字的特性来公平分配香蕉。这个故事不仅让学生理解了分数的基本性质,还培养了他们解决实际问题的能力。接下来,如果猴子4想要八块香蕉,我们可以怎么办呢?这样的设计既引人入胜,又能激发学生灵活运用知识解决问题的潜力。

  课堂的高潮之后,我引导学生思考如何利用商不变的性质来解释分数的基本特性,帮助他们建立新旧知识之间的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我致力于将枯燥的练习变得生动有趣。因此,我精心设计的整套练习都以游戏和比赛的形式展开。首先,我安排男女生进行抢答游戏,填空题的形式让学生说出解题思路。接着,我设计了互动游戏:例如,我的分子是4,你的分母应该填多少?我的分母是48,你的分子应该填多少?最后,通过小组之间抢夺苹果的游戏来结束本节课的教学活动。

  五、板书设计

  我的板书设计遵循了目的性原则、概括性原则和直观性原则,能够帮助学生将整堂课的学习内容直观地融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《比的基本性质》的说课稿3

  一、说教材

  1、说教学内容:

  《比例的意义和基本性质》人教版教材数学六年级下册第三单元的内容,在第41页例2及课堂活动,第51页练习六中的第1、2、3题。

  2、教材的地位与作用:

  比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

  3、教学目标的确定

  《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、过程与方法、情感和态度三方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:

  (1)知识与技能

  ①理解比例的意义,认识比例各部分名称,理解并掌握比例的基本性质。

  ②能运用比例的意义或基本性质判断两个比能否成比例,并会组比例。

  ③运用相关知识解决问题,提高解决问题的能力。

  (2)过程与方法

  引导学生通过观察、比较、计算、交流探索新知。

  (3)情感、态度与价值观

  在自主学习过程中体验发现数学规律的乐趣,培养学生用数学知识解决实际问题的能力。

  4.教学重难点

  教学重点:理解比例的意义与基本性质。

  教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组比例。

  5、教法、学法:

  根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

  二、说程序设计

  “比例的意义和基本性质”的学习基础是“比的意义和基本性质”,学生在单纯理解“比例的意义和基本性质”上没有多少困难,但是比和比例的意义容易混淆,基于此,我作了如下的教学设计。

  (一)在引入上我直接提示课题,引起生对学过的比的知识的.回忆。

  “比例的意义和基本性质”的学习基础是“比的意义和基本性质”, 我注重从学生已有的知识出发,让学生复习了比和求比值的知识,比的基本性质,让生在复习旧知的基础上自然过渡到新知识的学习,让学生初步感到新旧知识的联系,在这种情景下,用出示例1进入对新知识的学习。

  (二)教学新课

  教学比例的基本性质,我采用小组合作学习方式,自主探究比例的基本性质。这样引导学生通过自己的努力去发现比例的秘密,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的数学学习能力。教学完比例的基本性质后,告诉学生,判断两个比能否组成比例,除了根据比例的意义,也可根据比例的基本性来判断,为巩固练习一作一个铺垫提示。

  (三)课堂活动

  书上第50页,要求小组合作完成,改变了书中“任意抽出4张”的要求为“任意选出4个数字组成比例”,给学生足够的时间写比例,交流写法。

  设计意图:巩固运用比例的意义和基本性质的知识,让学生在玩中学,激发学生的学习兴趣,鼓励学生小组合作的意识。

  (四)巩固练习,形成技能

  1、基本训练

  (1)练习中的第1题,可用不同的方法来判断,先让学生独立判断,再全班交流。让学生在交流中互相学习。

  (2)练习中的第3题,这儿的设计意图应该是:让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是为下节课 “解比例”作准备。

《比的基本性质》的说课稿4

各位评委:

  大家好,今天我说课的内容是人教版小学数学第32—34页的《比例的意义和基本性质》。下面我将自己的设计理念、对教材的解读、对目标的预设以及教学流程和设计意图向大家作简要的阐述。

  [设计理念]:

  这是一节概念课,但我并不是对知识简单的复述,而是通过学生的探究活动,展现学生“活生生”的思维过程。数学课堂教学,需要必要的生活情境,现实生活中也蕴涵着大量的数学信息,因此在本节课中,我不仅注重让学生体验比例在生活中的应用,更注重“数学化”和“生活化”的结合。并根据学法指导自主性和差异性原则,让学生在观察—讨论—归纳—猜想的过程中,自主参与知识的发现、发展、形成的过程,使教法与学法融为一体。心理学家皮亚杰曾说过:“一切真理都要让学生自己去获得,由他重新去发现,而不是草率的传递给学生”。学生通过观察比较,发现规律,从特殊到一般抽象概括出意义和性质,培养了学生主动探索知识和概括知识的能力。

  [教材分析]:

  比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,主要属于概念教学。因为这节课是在整个比例单元教学中的第一节,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的`思想,而且可以用来解决日常生活中一些具体的问题。

  [教学目标]

  知识技能目标:

  1、理解比例的意义,掌握比例的各部分名称、能正确地读写比例,能根据比例的意义正确地写出比例,会判断两个比能否组成比例。

  2、理解并掌握比例的基本性质,能根据比例的基本性质写出比例。

  情感态度目标:

  培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义,探究比例的基本性质。

  教学难点:

  探究比例的基本性质和应用意义,判断俩个比能否组成比例。

  [教学设计]

  一、创设情境引发思考

  多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的指定有着特定的制作标准,然后让学生去思考,猜测。

  二、探究新知主动参与

  这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:比例的意义

  1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。

  2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义。

  3、揭示了比例的意义后及时进行练习。判断几组比能否组成比例,为什么?让学生说理巩固概念。

  4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,每两面国旗长之比,宽之比)这里教师要适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。

  5、练习,p33的做一做

  第二部分:比例的基本性质

  1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。

  2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。

  3、练习,p34的做一做

  4、小结判断两个比能否组成比例,可以根据比例的意义,

《比的基本性质》的说课稿5

  分数的基本性质

  1、使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。

  2、培养学生观察、分析、思考和抽象、概括的能力。

  3、渗透“形式与实质”的辩证唯物主义观点,使学生受到思想 教育 。

  教学 过程

  一、好的,让我来为您修改这段内容:在前面的学习中,我们已经了解了分数的概念,知道了真分数、假分数和带分数的含义,也学会了假分数与带分数、整数之间的转化方法。今天我们将继续深入学习分数相关的知识。

  二、导入新课例1、用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)这4幅图中阴影部分的面积相等。那么,这意味着这4个分数的大小也相等。

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)

  (2)观察例2、比较的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、这三个分数在形式上看起来不同,但实质上它们都是相等的。我们可以通过不同的方法将它们转化为相等的形式。让我们一起探讨一下这三个分数之间的联系和变化规律。

  三、抽象概括出分数的基本性质

  1、对比前面两道例题,我们发现一个规律:如果分数的分子和分母同时乘以或除以相同的'数(零除外),那么分数的值不会改变。这说明分数的大小只与分子和分母的比例有关,与具体数值无关。

  2、为什么要“零除外”?

  3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、分数的基本性质和我们以前学过的除法中商不变的性质非常相似。在分数中,分子和分母的比例关系是固定的,无论分数怎么化简或扩大,这个比例关系始终保持不变。这和除法中商不变的性质类似,无论被除数和除数怎么变化,商始终保持不变。这些性质都体现了数学中的一种稳定性和规律性。

  (1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)分数的基本性质是我们学习分数的重要内容,通过掌握这些性质,可以更深入地理解分数,并且能够灵活运用这些性质解决各种与分数相关的问题。比如,我们可以利用分数的性质进行除法简便运算,解决小数除法的问题。另外,我们还可以通过分数的性质将一个分数化成分母为12且大小不变的分数,这样可以更方便地进行计算。

  板书:

  教师提问:

  (1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6、所以,)

  (2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)

  (4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12、也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在里填上适当的数。

  4、的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与相等的分数。规律:这个分数的值是,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。

  六、课堂总结

  今天我们学习了分数的基本性质以及分数的四则运算。通过学习,我们明白了分数是用来表示一个整体被等分成若干份的数,分子表示被分的部分,分母表示总共被分成的份数。在进行分数的加减乘除运算时,我们需要根据分数的基本性质,如同分母相同可以直接加减,分子乘分子、分母乘分母等规则进行计算。这是学习分数四则运算的基础,需要认真掌握。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

《比的基本性质》的说课稿6

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

  2、教学重点、难点分析:

  教学重点:理解并掌握分式的基本性质

  教学难点:灵活运用分式的基本性质进行分式化简、变形

  3、教材的处理

  学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用。最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

  二、目标分析:

  数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的.过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:

  1、知识技能:

  1)了解分式的基本性质

  2)能灵活运用分式的基本性质进行分式变形

  2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

  3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

  4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

  三、教法分析

  1、教学方法

  数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  2、学法指导

  现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。

  3、教学手段

  我所采用的教学手段是多媒体辅助教学法。

  四、程序分析

  活动1创设情境,引入课题

  教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。

  在活动中教师要关注:

  (1)学生对学过的知识是否掌握得较好;

  (2)学生对新知识的探索是否有深厚的兴趣。

  设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。

  活动2类比联想,探究交流

  教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。

  设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

  活动3例题分析运用新知

  教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。

  在活动中教师要关注:

  (1)学生能否紧扣“性质”进行分析思考;

  (2)学生能否逐步领会分式的恒等变形依据。

  (3)学生是否能认真听取他人的意见。

  活动4练习巩固拓展训练

  教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。

  在活动中教师要关注:

  (1)大部分学生能否准确、熟练完成任务;

  (2)学生能否用数学语言表述发现的规律;

  (3)学生在运算中表现出来的情感与态度是否积极。

  设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。

  活动5 小结评价布置作业

  学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:

  (1)学生对本节课的学习内容是否理解;

  (2)学生能否从获取新知的过程中领悟到其中的数学方法。

  设计意图:

  学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。

《比的基本性质》的说课稿7

尊敬的各位评委老师:

  大家好!

  我是xx号考生,今天我说课的内容是义务教育课程标准实验教科书青岛版小学数学五年级下册第二单元信息窗3的教学内容—分数的基本性质(板书)。

  一、说教材

  分数的基本性质是学生在学习了分数的初步认识,掌握了分数的意义,分数与除法的关系,真分数,假分数,带分数的基础上进行学习的。本节课通过设计科普展板的情境学习分数的基本性质,为今后学习分数四则运算和解决有关分数的问题打下基础。

  二、说教学目标

  (1)知识与技能目标:结合具体情境,理解和掌握分数的基本性质,能运用分数的基本性质找出与一个分数大小相等的分数。

  (2)过程与方法目标:在探索分数的基本性质的过程中,培养学生观察、概括的能力,进一步发展学生的数感及合情推理能力。

  (3)情感态度与价值观目标:运用分数的基本性质解决实际问题的过程中,使学生感受到数学与生活的密切联系,激发学生的学习兴趣,增强学生的自信心,培养学生的应用意识。

  三、说教学重难点:

  根据对教材的分析以及学生的特点,本节课我确定的教学重点是:理解和掌握分数的基本性质。

  教学难点是:自主探索,发现,归纳分数的基本性质,运用分数的基本性质解决实际问题。

  四、说教学方法

  新课标指出教师是学习的组织者、引导者、合作者。根据这一理念,本节课我主要采用了情境教学法、引导发现法(实践操作法),这些方法能充分调动学生的积极性,激发学生的求知欲,培养学生的创新精神。

  自主探究,合作交流、动手操作是本节课学生学习新知识的主要方法。学生在具体情境中从数学角度发现问题,提出问题,感受数学来自生活的道理。通过动手操作、动脑思考、合作交流使其获得成功的体验,加深对知识的理解和掌握。

  五、说教学过程:

  教育家布鲁纳说过:“认识是一种过程,而不是一种产品”。根据这一思想,本节课我以学生为立足点,设计如下教学过程:

  (一)创设情境,提出问题

  新课标提倡要创设情境,激发学生的积极性。课开始,我跟学生交流,你们参加科技活动时都设计过哪些科普展报呢?学生讨论交流后,我利用多媒体课件出示学校科教活动中同学们设计的科普展板的情境图,引导学生仔细观察每块展板文字与图片所占比例,从数学角度提出问题。学生观察思考后可能提出:“每块展板的图片部分占整个版面的几分之几?”等有价值的数学信息。

  爱因斯坦说过:提出一个问题往往比解决一个问题更重要。通过生动形象的情境,让学生从数学角度提出问题,使学生产生认知的兴趣,调动学生自主探索解决问题的热情,从而有效开展数学学习活动。

  (二)研究素材,猜想规律

  一、教学第一个红点,学习分数的基本性质

  教师出示问题:“每块展板图片部分占整个版面的几分之几?”,让学生独立解决。通过思考后学生得出:“把每块展板看作单位“1”,图片部分分别占展板的1/2,2/4,4/8。教师追问学生这三个分数有什么大小关系?学生通过自己的认识猜测大小后,教师让学生利用彩笔和纸条涂一涂,画一画分别表示出这三个分数,通过涂一涂,画一画,让学生展示交流,学生直观的发现这三个分数是相等1/2=2/4=4/8。这时,教师抓住时机提出问题:“分数大小不变,但分子,分母是按照什么规律变化的呢?“先让学生独立思考,小组交流,然后全班汇报。有的学生发现:“1/2的分子分母同时乘2就得到了2/4,分子分母同时乘以4就得到了4/8。而有的学生发现4/8的分子分母同时除以2就得到了2/4,同时除以4就得到了1/2(板书)。教师再写出一组分数2/5=6/15=12/30,让学生举这样的例子。请同学仔细观察这三组相等的分数,发现了什么?通过观察、讨论交流。学生发现:分子和分母同时乘以或除以相同的数,分数大小不变。教师随即向学生揭示,像这样一个分数的分子和分母同时乘以或除以相同的数,分数的大小不变;这就是分数的基本性质。教师引导学生质疑“为什么0除外”学生进行讨论,回答:分数的分子分母同时乘以或除以0,分数就没有意义。我对学生的回答进行肯定,进一步强调分数的基本性质。

  数学学习特别关注学生的体验。这样的设计,让学生通过自主探索,动手操作,涂一涂,画一画真正体验分数的基本性质的形成,逐步理解分数基本性质的含义,使学生对所学知识有认同感。同时培养学生的动手操作、独立解决问题的能力。

  二、教学绿点,对分数的基本性质进行巩固和应用

  出示问题:“根据分数的基本性质,你能写出几个相等的分数”?学生可能写出2/3=8/12=10/15,也可能写出48/64=24/32=6/8让学生进行小组交流,说出自己写相等分数的依据和方法。学生交流后得出:“一个分数根据分数的基本性质,把分子分母同时乘以或除以同一个数,分数大小不变。

  通过让学生写出几个相等的分数,使学生能初步应用分数的基本性质,加深对分数进本性质的理解和掌握。

  三、讨论交流、验证规律

  我引导学生回顾分数基本性质的学习过程,让学生根据规律验证是不是所有的分数经过这样的变化,大小都不变呢?学生对画有12个小正方形的长方形卡片上进行涂一涂、画一画,找出这些小正方形的4/12,1/3,通过涂一涂、画一画学生得出:4/12=1/3,从而进一步验证了分数的基本性质。

  这样的设计,让学生通过动手操作,举例验证分数的基本性质,加强对分数基本性质的理解和巩固,培养学生的应用意识。

  四、巩固拓展、应用规律

  为了使学生掌握新知,锻炼能力,发展思维,我设计了如下练习题:

  1、基础练习

  自主练习1:先涂色,在比较大小。学生独立完成,使学生加深对分数基本性质的直观认识。

  自主练习2、在()里填上合适的`数。通过填合适的数,加深学生对分数基本性质的理解。

  2、综合练习

  自主练习3:通过这道题,使学生将所学的知识应用到实际中去,感受数学来自于生活的道理。

  3、新旧对比,沟通联系

  让学生回忆商不变的性质,并与本节课学习的分数的基本性质进行比较,使学生发现利用商不变的性质也能解释分数基本性质的存在,培养了学生初步的演绎推理能力,同时加深了学生对知识的理解。

  五、总结反思,深化规律。

  我带领学生总结本次课堂:同学们通过这节课你有什么收获?让学生从知识、方法、感受三个方面进行交流。

  六、板书设计

  x2 = 2/4 = x4

  = x2 = 1/2

  分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

  好的板书是一节课的精华,本节课我采用重点式的板书设计,将教材中最为重要的内容加以归纳概括,力求用简洁的文字表达清楚,层次明确,重点一目了然。

  我的说课内容到此结束,诚心期待各位评委老师的批评指导,谢谢大家!

《比的基本性质》的说课稿8

尊敬的各位领导,老师们:

  大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材内容及学生的认知水平,我制定了以下教学目标:

  1..使学生理解与掌握分数的基本性质。

  2.培养学生观察、比较、分析、概括等方面的能力。

  三、教法和学法(课件)

  为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。

  新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。

  四、教学过程(课件)

  结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。

  (二)、动手操作、初步感知(课件)

  我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:

  (三)比较归纳、揭示规律(课件)

  (1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。

  (2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。

  (3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的.教学内容。

  (4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。

  课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。

  五、板书设计

  说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《比的基本性质》的说课稿9

  一、教学内容的说明

  《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

  二、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

  三、教学目标

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

  2.培养学生观察、比较、分析、概括等方面的能力。

  3、通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

  四、教学重点、难点

  教学重点:

  理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  教学难点

  学生通过猜想和动手验证,抽象概括出分数的基本性质。

  五、教法学法的选择

  教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、教学过程的设计

  为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“1.创设情境——引发思考2.引出新知——动手实践3.初步感知——引导观察4.发现规律——巩固练习5.课堂小结——加深理解 ”五个环节。

  一、创设情境,引发思考

  1、上课开始我引入了故事:有一天妈妈给淘气做了一个香喷喷的大蛋糕,蓝猫看见了也想吃。淘气说:我只有一个蛋糕,要不我分给你一些吧,我有三种分法,请你选择一种:

  第一种:把蛋糕平均分成2份,送给你其中的.一份,也就是这个蛋糕的1/2;

  第二种:把蛋糕平均分成4份,送给你其中的2份,也就是这个蛋糕的2/4;

  第三种:把蛋糕平均分成8份,送给你其中的4份,也就是这个蛋糕的4/8。

  选择哪一种分法吃到的蛋糕最多呢?

  同学们,如果你是蓝猫,你会选择哪一种呢?

  先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

  二、对于分数基本性质的理解

  分为3个层次 借助长方形纸条来理解。通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)——总结完善分数的基本性质。

  1、借助长方形纸条理解

  这里分成两份层次(1)借助直观图理解(2)分析分数理解

  (1)借助直观图理解。

  首先,引导学生在同样大的长方形纸条上分别表示出、、想一想为什么为什么分的份数不一样,取的份数也不一样可他们最后分的大小却会相同呢?

  (2)借助分数理解

  在学生清楚的知道了三个分数为什么会相等后,从图在回到抽象的三个分数上,说一说, 他们的分子、分母是怎样变化的。说明白后,明确分的份数就是分母,取得分数就是分子,在板书上改为“分母扩大了两倍、四倍,分子也相应扩大了两倍、四倍,分数大小不变”

  2、通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)

  总结规律是在大量的直观的数据或练习的基础上实现的。为了给学生便于学生总结,我设计了“你还能举出一个和3/6大小相等的分数吗?你是怎样想的?如果想让分子是9,分母是? 想让分母是18,分子呢?”一方面学生利用了分数的基本性质做了一些基础的题,另一方面在叙述你是怎样想的时候,其实也是对分数基本性质的概括。这样当“用一句话总结你的发现”的时候,在语言叙述上就没有什么障碍了。

  3、关于“同时”“相同的数““0除外”的理解

  两种预设,在总结出“分数的分子、分母同时乘或除以相同的数,分数的大小不变。”让学生说说自己的理解,如果有有学生提出就上提出的学生说一说,如果没有主动提出,就通过做个练习题,“2/3哪样列式行吗?为什么?”。让学生说一说通过做这两个题你有什么想提醒大家的。

  四、巩固练习

  根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。其次是稍有变动的,需要结合分数与除法关系完成的变式练习。

  最后为了满足优等生的需要还涉及了以下练习

  5/9的分母加9,分子加几,分数的大小不变。

  板书: 分数的基本性质

  1/2==2/4=4/8

  分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。

《比的基本性质》的说课稿10

  教学目标

  (一)理解和掌握分数的基本性质。

  (二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握分数的基本性质。

  (二)归纳分数的基本性质,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程设计

  (一)复习准备

  1.口答:(投影片)

  根据120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:分数有一条类似于除法有商不变性质的性质,即分数的值不变。当一个分数被化简或扩大倍数时,它的值不会改变,只是表达的方式不同而已。这是因为分数是由分子和分母组成的,它们之间的`比例关系确定了分数的值。因此,无论分数怎样化简或扩大倍数,只要分子与分母的比例不变,分数的值就保持不变。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:分别将这些形状平均分成2份,4份和6份,并在其中的1份,2份和3份上标记颜色或填充阴影。然后用分数表示涂色部分。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  (3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在()里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业:课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是指在分数的大小不变的情况下,研究分子和分母的变化规律。在教学中,可以通过引导学生观察、对比、分析分数的变化,让他们在变化中发现规律、总结分数的基本性质。设计思考题可以帮助学生运用规律来改变分数。通过这样的方式,可以加深学生对分数基本性质的理解。

  学生掌握了分数的基本性质之后,可以通过举例讨论的方式来加深对商不变性质的理解。通过让学生举例讨论,可以帮助他们更好地理解分数的基本性质和商不变性质之间的内在联系,从而更好地将新旧知识融合在一起。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  学生将通过一系列的活动来学习分数的基本性质。首先,他们会通过实际操作认识到分子、分母不同的分数可能是相等的,从而培养他们的直观认识。接着,通过观察和总结,学生将探索分子和分母的变化规律,从而深入理解分数的运算规律。最后,学生将总结分数的基本性质,并通过商不变性质来解释这些性质的重要性。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

《比的基本性质》的说课稿11

  一、说教材

  1、教学内容:

  《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

  2、教学目标:

  根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  3、教学重、难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  二、说教法、学法:

  根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识

  三、[教学设计]

  一、创设情境引发思考

  多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的指定有着特定的制作标准,然后让学生去思考,猜测。

  二、探究新知主动参与

  这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:比例的意义

  1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。

  2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义。

  3、揭示了比例的意义后及时进行练习。判断几组比能否组成比例,为什么?让学生说理巩固概念。

  4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,每两面国旗长之比,宽之比)这里教师要适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。

  第二部分:比例的'基本性质

  1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。

  2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。

  3、练习,p34的做一做

  4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。

  三、巩固练习形成技能

  基础练习

  1、写两个比值是0.4的比,并组成比例。这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)

  2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。

  发展练习:

  1、把乘积相等的式子改写成比例。这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。

  2、如果5a=3b,那么a:b=():()

  四、课堂小结,回归目标

  这堂课我们学习了什么,你有什么收获?

《比的基本性质》的说课稿12

  一、说教材

  小学数学冀教版第十册第单元《等式的基本性质》是学生已经掌握了方程的意义的基础上学习的。《等式的基本性质》是本单元的重点,更是今后学习解方程的基础。

  我搜集了人教版的教材近行对比,发现:虽然版本不同,内容编排不同但是数学学习内容大体相同,都以学生的动手实践,自主探究与合作交流为学生学习数学的主要方式。整个过程中,教师只是探究活动的组织者、引导者、合作者。在这里值得一提的就是我们现在的版本把等式的基本性质一和性质二都是以文字的内容具体的呈现了出来,而人教版教材是通过游戏的方式呈现的,具体的性质内容是在后来的解方程当中逐步体现的。我个人觉得现在的版本还是可取的。

  二、说教学目标

  根据大纲的要求和教材的特点,结合五年级学生的特点我制定了如下教学目标:

  知识目标:

  1、理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。

  能力目标:

  1、在用算式表示试验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。

  2、通过学习理解并能运用等式的基本性质解决简单问题。

  情感目标:培养学生讨论归纳的意识和习惯,养成认真观察、深入思考的良好思维品质。

  结合学生的实际情况,我把教学重难点确定为:

  教学重点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。

  教学难点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。

  教学具准备:天平,教学课件,学生导学案等材料

  三、说学情分析

  学生已经习惯进行高效课堂模式下的学习,具有一定的探究与合作交流能力。在学习了方程的意义的基础上,再加上对天平已有知识的经验积累,应该根据我的教学设计能够一步步研究出等式的基本性质。当然由于学生的理解能力的差异,对于学困生还是应该照顾到。为了实现上述教学目标,我精心进行教学设计,引领学生课堂生成:

  四、说教学过程(以学生的自主探究为主)

  (一)、速算比赛:

  6。6÷11= 128÷3。2= 250×12= 60×0。2=

  36÷180= 2。6×10= 190×0。4= 74÷0。2=

  这几道题是一直以来坚持的口算训练。不过在处理上采取了比赛的方式,时间是一分钟,我公布答案后学生迅速自评,并由组长算出组内共算对了多少道题,以此作为标准评出优胜小组,并及时进行加分评价。

  (二)、创设情境

  教师导语:刚才的比赛中某某组表现的`很棒,为他们组赢得了宝贵的2分,希望在接下来的学习中继续发扬这种精神,同时老师更希望其他组能有出色的表现。上节课我们用了什么仪器了方程的意义呢?(学生肯定会异口同声的说是天平)教师随机出示天平。每组一台。我们这节课还利用天平学习,学习什么呢?请大家看导学案并齐读课题和目标。教师相机板书。

  (三)、独学导学一

  导学一:

  小实验1、根据图片演示实验。列式为()

  实验2、在天平左边的托盘里再放入20克的砝码,这时天平出现什么情况?接着再天平右边的托盘里放入20克砝码。根据这时天平的情况列式()

  实验3接着再在天平左右两边同时放入100克砝码,天平会怎么样?可以列出等式()

  实验4接着在天平左边的托盘里再拿走20克的砝码,在天平右边的托盘里再拿走20克的砝码。天平会怎样可以列出等式()?

  总结:通过上面的实验:观察上面的4个等式,你发现了什么?

  学生根据我的设计大多数同学根据已有经验会很快列出算式,可能有同学会利用我给出的天平来验证,独学充分后教师要做好评价。

  (四)、对学、群学。

  学生充分独学后,对子之间交流进入对学阶段。对子之间交流,交流完后组长组织组内组内总结展示。小组长要根据情况确定待展同学。教师巡视观察那个组利用天平利用的效果好准备接下来的精英展示。教师要关注学困生。特别是双差生。教师还要做评价。

  (五)、精英展示

  我这个环节准备一组或两组展示。展示的方式可以是一人也可以是多名同学一块展示。教师要做好规律的总结提升和及时的评价,特别是听展。教师利用课件出示学生列出的每个等式。

  五、完成导学二。

  导学二(1)根据图片写等式

  (2)根据图片写等式:

  比较上面两组等式,你发现了什么规律?

  有了学习经验,这个环节应该很顺利。还是按照高效模式进行,在教学中注意利用教学课件突破学生理解上的难点。有的小组可能还会出现加减的情况,教师要适当引导到倍数关系。

  达标训练:(1)30+x=100(2)x — 71=4

  30+ x—30=100()x–71+()=4()

  x=()x=()

  (3)21 x=105(4)x ÷21=3

  21x÷()=105()x÷21×()=3()

  x=()x=()

  学生理解了等式的基本性质理论,我觉得由理论到实践应该给学生一个过渡空间,所以我设计了这一环节。学生独立完成后挑选组长进行展示,此时教师重点强调学生填空的依据,这样就更好的巩固了刚学完的理论。完成后教师小结。引导学生谈收获。

  最后是达标测评。我选的是教材42页的第一题。学生做完后教师公布答案,学生互评。教师要做好评价。

《比的基本性质》的说课稿13

  《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

   知识与技能:

  1. 感受生活中存在的不等关系,了解不等式的意义。

  2. 掌握不等式的基本性质。

   过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

   情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

   教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

   教法与学法:

  1. 教学理念: “ 人人学有用的数学”

  2. 教学方法:观察法、引导发现法、讨论法.

  3. 教学手段:多媒体应用教学

  4. 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的教学过程阐述一下:

  一、复习导入新课

  上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

  1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.

  2.理解不等式性质与等式性质的联系与区别.

  3.提高观察、比较、归纳的能力,渗透类比的思想方法.

  二、探求新知,讲授新课

  第一部分:学前练习

  1. -7 ≤ -5, 3+4>1+4

  5+3≠12-5, x ≥ 8

  a+2>a+1, x+3 <6

  (1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?

  (2)这些符号两侧的代数式可随意交换位置吗?

  (3)什么叫不等式?

  目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

  第二部分:探究新知:

  1.商场A种服装的价格为60元,B种服装的价格为80元

  (1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?

  (2)两种服装都降价5元,哪种服装价格高?降价15元呢?

  (3)两种服装都打8折出售,哪种服装价格高?

  2.已知 4 > 3,填空:

  4×(-1)——3 ×(-1)

  4×(-5)——3 ×(-5)

  目的:设计该部分的目的是为了引出不等式的基本性质做铺垫。

  第三部分:不等式的基本性质的探究

  1:填空: 60 < 80

  60+10 80+10

  60-5 80-5

  60+a 80+a

  性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变.

  2:填空(1):60 < 80

  60 ×0.8 80 ×0.8

  填空(2): 4 > 3

  4×5 3×5

  4÷2 3÷2

  性质2,不等式的两边都乘以(或除以)同一个正数,不等号的'方向不变。

  3:填空: 4 > 3

  4×(-1) 3×(-1)

  4×(-5) 3×(-5)

  4÷(-2) 3÷(-2)

  性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  三、小结不等式的三条基本性质

  1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变;

  3.*不等式两边都乘(或除以)同一个负数,不等号的方向改变 ;

  与等式的基本性质有什么联系与区别?

  四、典型例题

  例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

  (1) x-2< 3 (2) 6x< 5x-1

  (3) 1/2 x>5 (4) -4x>3

  解:(1)根据不等式基本性质1,两边都加上2,

  得: x-2+2<3+2

  x<5

  (2)根据不等式基本性质1,两边都减去5x,

  得: 6x-5x<5x-1-5x

  x<-1

  例2.设a>b,用“<”或“>”填空:

  (1)a-3 b-3 (2) -4a -4b

  解:(1) ∵a>b

  ∴两边都减去3,由不等式基本性质1

  得 a-3>b-3

  (2) ∵a>b,并且-4<0

  ∴两边都乘以-4,由不等式基本性质3

  得 -4a<-4b

  五、变式训练:

  1、已知x<y,用“<”或“>”填空。

  (1)x+2 y+2 (不等式的基本性质 )

  (2) 3x 3y (不等式的基本性质 )

  (3)-x -y (不等式的基本性质 )

  (4)x-m y-m (不等式的基本性质 )

  2、若a-b<0,则下列各式中一定成立的是( )

  A.a>b B.ab>0

  C. D.-a>-b

  3、若x是任意实数,则下列不等式中,恒成立的是( )

  A.3x>2x B.3x2>2x2

  C.3+x>2 D.3+x2>2

  六 、小结

  七、作业的布置

  八、 以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

《比的基本性质》的说课稿14

  尊敬的各位老师:

  大家好!我是泰山小学的高崇辉老师,我今天说课的题目是比的基本性质。

  首先,我来说一说教材,我讲的是九年义务教育五年制小学数学第九册63页比的基本性质,教材是在学生已经掌握了比和分数、比和除法的关系以及分数的基本性质和除法的商不变的规律的基础上进行教学的,根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:

  1、通过自主探索、比较类推出比的基本性质,掌握化简比的方法,并会利用比的基本性质把一个比化成最简单的整数比。

  2、培养学生的迁移类推、抽象概括能力。

  3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。

  并将理解并掌握比的基本性质,作为本节课的教学重点,应用比的基本性质把比化成最简单的整数比作为本节课的教学难点,在教学中我主要采用了探究学习的方法,教学媒体的使用:多媒体。

  接着我来说一说本节课的教学过程和设计意图。

  一、创造生活情境,激发学生学习兴趣

  上课伊始我询问学生:“同学们喜欢喝蜂蜜水吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的蜂蜜水,这不小明的妈妈给小明准备了两杯蜂蜜水,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?电脑演示多媒体课件演示:第一杯360毫升的水,40毫升蜂蜜;第二杯180毫升的水,20毫升蜂蜜;同学们会兴致盎然,想尽各种办法帮助小明。有的同学会根据商不变的规律确定选哪杯都可以,因为360毫升的水是40毫升蜂蜜的9倍,180毫升的水是20毫升蜂蜜的9倍即360÷40=180÷20;有的同学会根据分数的基本性质确定选哪杯都可以,因为40毫升蜂蜜是360毫升水的九分之一,20毫升蜂蜜是180毫升水的九分之一即40/360=20/180,学生会想尽各种办法帮助小明解决这个问题。

  这部分的设计意图是每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外同学的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时感受到“数学源于生活”。

  二、引导学生发现规律,总结比的基本性质

  1、 猜想规律

  师:刚才同学们利用商不变的规律,分数的基本性质帮小明解决了问题。你们还记得它们的内容各是什么吗?

  学生在师生互动,生生合作中说出商不变的规律,分数的基本性质的内容。屏幕出示文字内容。

  我接着询问在分数的基本性质里,有哪些词很关键?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?

  这回你们又会想到什么呢?(比的基本性质)那么,比的.基本性质该是怎样的呢?本节课我们就一起来研究探讨它。

  (板书课题:比的基本性质)

  2、 实践探究

  师:观察除法的基本性质(手指向商不变性质)与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?把你的想法在小组里说一说。

  (1)小组讨论

  (2)汇报结果:学生根据讨论结果发表意见。

  (3)师生共同总结比的基本性质的内容。

  (4)强调

  学习了比的基本性质,你认为哪些词语是很重要,你想提醒同学们注意点什么?(同时、相同、0除外)

  这一部分的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考,在有理有据表达、建立在对意义求真求准的对比中生成、完善了概念。也让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。

  三、 教学例1

  1、说明。利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数(板书:最简分数)。同样,应用比的基本性质,可以把比化成最简单的整数比。(板书:最简单的整数比)

  2、讨论:怎么理解“最简单的整数比”这个概念?在小组里议一议。

  3、指名汇报,形成共识:

  ㈠必须是一个比;㈡前项、后项必须是整数,不能是分数或小数;㈢前项与后项互质。

  4、化简比

  出示例1把下面各比化成最简单的整数比。

  (1)14:21 (2)1/6 :2/9 (3)1。25:2

  学生板演,其余同学各抒己见说出不同方法。

  师生共同总结整数比、分数比、小数比的化简方法。

  这一部分的设计意图是“最简单的整数比”是本节课教学的难点。这里摒弃了由典型的个例入手解释“最简单整数比”的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式的充要铺垫。学生在小组内部交流基础上进行组间的合作交流,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力,使学生思维进入高潮。

  四、实践运用

  我设计了四部分练习题。

  第一部分填空题包括3道题:

  1、3:8=(3×2):(8×□)

  2、15:10=(15÷□):(10÷5)

  3、5:3=(5×□):(3×□)

  这一部分的设计意图是学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。

  第二部分根据比的基本性质判断下列各题

  (1)4 :15=(4×3):(15÷3) ( )

  (2)3/5:4/7=(3/5×6):( 4/7×6) ( )

  (3)10 :15=(10÷5):(15÷3) ( )

  (4) 7 :9 =(7+5):(9+5) ( )

  第三部分应用比的基本性质解决生活中的问题

  师:上课前老师统计了咱们班参加课外活动小组的人数,下面同学自己读题,然后试着解决这些问题,如果遇到困难同桌之间或小组之间可商量解决。

  我们班共有学生48人,男生28人,女生20人:

  (1)请写出我们班男生和女生的人数比,并将这个比化成最简单的整数比。

  (2)在课外小组活动中,我们班参加美术小组的人数占全班人数的1/4,参加科技小组的人数占全班人数的3/8,请写出参加美术小组和科技小组的人数比,并将这个比化成最简单的整数比。

  (3)参加体育小组的人数是舞蹈小组的1。5倍,请写出参加体育小组和舞蹈小组的人数比,并将这个比化成最简单的整数比。

  从学生熟悉的生活情境入手,把学生引入到现实情境中进行“再创造”

  活动有利于让学生感受到数学就在身边,使原来枯燥乏味的数学题有了“应用味”,使学生对数学产生浓厚的兴趣和亲切感,会用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。从而培养学生的实践能力。另外尊重学生各性,让课堂成为学生发挥个性的天地,成为自我赏识的乐园。

  第四部分思考题

  1:8=(1+4):(8+□) 6:10=(6-3):(10÷□)

  让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。

  五、评价体验

  比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。

  这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。

  以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。

《比的基本性质》的说课稿15

  今天我说课的内容是《分式的基本性质》。

  下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的`变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  1)课本第10页例2填空:

  2)设计意图:例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的目的。

  活动4:练习巩固拓展知识

  课堂练习:

  (1)课本第11页4.下列各组中的两个分式是否相等?为什么?

  (2)不改变分式的值,使分子、分母里的系数变为整数:

  教师展示练习学生独立思考,老师巡堂并进行个别辅导,然后,对于第1题,进行个别提问;第2题,叫两名学生到黑板演示。

  设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用,并为下一节学习分式的约分做铺垫;第2题,强化训练为了培养学生用“性质”解决问题的能力。

  拓展训练:

  课本第11页5.不改变分式的值,使下列分式分子和分母都不含“-”号

  学生组内讨论,老师巡堂参与交流,引导学生发现规律,并综合各小组的不同意见,有针对性地进行讲解,归纳出变号法则。

  分式的变号法则(板书)

  分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变,即:

  设计意图:介绍分式的变号法则,是为了让学生结合有理数的除法法则,更深刻地理解分式的基本性质。

  活动5:小结评价布置作业

  小结:

  1)分式的基本性质是什么?

  2)运用分式基本性质时要注意什么?

  3)分式变号的法则是怎样的?

  展示问题,学生思考,并在老师的引导下,学生自己进行整理、归纳。

  设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善。

  小结完成后,为了同学能够有针对性地进行小结,我准备了三个问题:

  1)这节课你学到了什么?

  2)这节课给你的印象最深的是什么?

  3)你如何评价你自己、同学或老师的表现?

  但在课堂上,不要限制他们,让他们畅所欲言,学生会有教师想象不到的精彩。

  【布置作业】

  下课铃响了,我布置作业:

  1、课本P65的习题4;

  补充作业:

  布置作业:课本第12页习题16.1第12题;

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

【《比的基本性质》的说课稿】相关文章:

《比的基本性质》说课稿11-07

比的基本性质说课稿11-11

分数的基本性质说课稿03-19

分式的基本性质说课稿12-12

比例的基本性质说课稿01-14

《比例的基本性质》说课稿11-21

分数的基本性质说课稿11-11

分数基本性质说课稿07-06

等式的基本性质说课稿07-02

《分式的基本性质》说课稿06-28