- 相关推荐
五年级数学组合图形的面积的说课稿
作为一名教师,时常会需要准备好说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么说课稿应该怎么写才合适呢?以下是小编收集整理的五年级数学组合图形的面积的说课稿,欢迎阅读与收藏。
尊敬的评讲师:
大家好!
本节课是在学生学习了平行四边形、三角形、梯形的面积计算基础上进行系统整理,根据知识的重点难点以及学生的易错易混点进行合理的习题创编,提升学生的数学素养。通过让学生动手实践,自主探索,合作交流,沟通各种面积公式及其推导过程的内在联系,解决“为什么”的问题;再通过不同层次的练习,巩固已学过的各种多边形的面积公式,提高应用公式解决简单实际问题的能力,发展学生的思维能力,落实减负增效,提升学生的数学素养。
通过练习,进一步熟悉多边形面积的计算方法及公式的推导过程,加深对平面图形面积计算间关系的理解。
利用平行四边形、三角形、梯形的面积计算公式解决实际问题。
理解各图形之间联系,灵活解决实际问题。
多媒体课件。
课前谈话:同学们咱们又见面了,还记得我来自哪里吗?胶州是一个美丽的地方,到处都充满了美的事物,少海新城就是其中的代表之一,让我们一睹为快好吗?(播放视频)看了这段视频你有什么感受?今天我们就一起去少海新城游览一番,让我们一边游览一边发现那里面有什么数学问题。准备好了吗?上课。
1、创设情境,启发导课。
谈话:同学们请看,目前要在这片空地上种植一块花圃,大家猜猜看,它可能是什么形状?
学生可能回答:长方形、平行四边形、三角形等。
揭题:同学们想到了这么多图形,今天咱们就一起走进这些图形,上一节多边形面积的练习课。(板书课题)。
2、回顾梳理。
(1)解决问题。
学生回答:不能。
追问:为什么不能?
谈话:(课件呈现数据)现在你能计算了吗?快速的写在练习纸上。
组织学生交流求花圃面积的做法。
(2)梳理公式。
谈话:同学们做的都很好,你们在计算它们的面积时,先想到什么?学生回答。
追问:那你能说说它们的面积公式用字母怎么表示吗?根据学生的回答板书字母公式。
(3)突破底与对应高的问题。
学生回答:底要和对应的高相乘。
追问:那为什么非要用底与它的对应高相乘呢?
谈话:看来大家有困惑,没关系,接下来让我们一起来回顾一下这些图形面积公式的推导过程,我相信只要同学们边观察边思考,就一定会想明白其中的道理。
课件演示平行四边形面积公式的推导过程。
追问:那三角形呢?谁能结合三角形面积公式的推导过程给大家解释一下吗?
学生回答:将两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底就是三角形的底,平行四边形的高正好是三角形的高。
根据学生回答课件演示三种拼的过程。
小结:看来我们在计算平行四边形和三角形面积时,一定要注意用底和它对应的高相乘。
1、基本练——求花圃的面积已在第一环节梳理知识中完成。
2、变式练——求草坪的高。
谈话:草坪的面积我们解决了,工作人员还在草坪中修了一条鹅卵石小路,你能求出这条小路有多长吗?(课件呈现)。
提问:要求小路的长,就是求什么?
根据学生回答追问:对就是求9米这条底对应的高,想一想要求高,先求什么?自己在练习纸上做出来。
学生独立完成,教师组织学生进行组间交流。
谈话:平行四边形草坪中小路有多长?
学生回答。
提问:三角形草坪中小路的长是多少?
学生可能出现:
生1:12×6÷2=36平方米。
36÷9=4米。
生2:12×6÷2=36平方米。
36×2÷9=8米。
谈话:说说你是怎么想的?引导学生交流自己的想法。
谈话:说得真有条理,同学们来看当我们知道了三角形的面积和底,要求高,别忘了先用三角形的面积乘2,得到等底等高的平行四边形的面积,然后再除以底,得到这条底所对应的高。(课件呈现)。
3、综合练——计算组合图形的面积。
(1)利用“加加减减”的方法求面积。
谈话:景区里还有一些问题需要同学们去解决,敢继续接受挑战吗?在这块平行四边形草坪旁边是一片底为4米,高为6米的三角形的竹林,草坪和竹林一共占地多少平方米?(课件呈现)。
学生独立解决。
学生交流做法:
生1:平行四边形面积加上三角形面积。
生2:求梯形面积。
小结:刚才同学们用部分面积加部分面积的方法,我们可以把它看成“加”的方法。(板书:加)。
谈话:同学们继续看,在三角形草坪周围增设了健身区,你能求出健身区的面积吗?(课件呈现)。
学生独立解决。
学生交流做法:用梯形的面积减去空白三角形的面积就是健身区的面积。
(12+18)×6÷2-12×6÷2。
谈话:同学们这种用大面积减小面积的方法我们可以把它看成“减”的方法。(板书:减)。
小结:其实我们在求组合图形面积时经常会用到这种“加加减减”的方法。(完善板书:加加减减)。
(2)减少信息,利用转化思想解决问题。
谈话:刚才同学们的表现很出色,继续看,现在你还能求出健身区的面积吗?先自己想一想,然后和小组的同学说说你的想法。(课件呈现缺少上底的图形)。
组织学生交流。
谈话:请同学们请看,蓝色三角形和黄色三角形有什么关系?
追问:为什么它们的面积相等?
根据学生回答,借助课件演示利用等底等高的三角形面积相等将两个阴影部分的三角形转化成一个大三角形,渗透转化思想,让学生体验转化思想在数学上的应用。(板书:转化)。
4、发展练——求喷池面积。
(1)学生独立做。
(2)组织学生交流。
谈话:谁愿意把自己的解决方法介绍给大家?学生到展台讲解,可能出现:
生1:15×2÷5=6(米)。
5×6=30(平方米)30+15=45(平方米)。
生2:15×2÷5=6(米)。
(5+5+5)×6÷2=45(平方米)生3:15×(1+2)=45(平方米)根据学生交流教师适时小结:虽然他们解题的思路不一样,但都用到了画图的方法。看来,在解决图形问题中,画图确实是一种很好的策略。(板书:画图)。
谈话:同学们,快乐的少海之旅就要结束了,我们在观光游览的同时,还解决了很多有价值的数学问题。通过这节课的学习你有什么收获?老师希望同学们从学会了什么,获得了哪些方法,有什么感受等方面全面进行总结,先在小组里说一说,教师引导学生交流并进行评价。
教师总结提升:老师希望同学们在以后的学习中,都能像今天这样从各个方面进行全面总结,这种回顾梳理知识的能力,对我们今后的学习会有很大的帮助。
【五年级数学组合图形的面积的说课稿】相关文章:
组合图形的面积说课稿06-10
《组合图形的面积》说课稿07-02
说课稿:《组合图形面积》12-17
《组合图形的面积》说课稿经典(15篇)07-03
组合图形面积说课稿15篇07-15
组合图形的面积说课稿通用15篇06-10
《组合图形的面积》说课稿(范例15篇)07-02
组合图形的面积教案08-25
组合图形的面积说课稿(锦集15篇)06-10
《组合图形的面积复习课》数学教学反思10-27