当前位置:育文网>教学文档>说课稿> 七年级数学说课稿

七年级数学说课稿

时间:2024-07-16 15:36:49 说课稿 我要投稿

七年级数学说课稿大全【15篇】

  作为一名默默奉献的教育工作者,常常需要准备说课稿,说课稿有助于提高教师的语言表达能力。说课稿应该怎么写呢?下面是小编整理的七年级数学说课稿,希望能够帮助到大家。

七年级数学说课稿大全【15篇】

七年级数学说课稿1

各位老师、同学:

  大家好!

  今天我说课的内容是人教版义务教育课程标准实验教科书初中数学七年级下册第八章《二元一次方程组》第一节内容。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识与理解。

  一、教材分析

  1、教材的地位

  二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的`兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

  2、教学目标

  使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

  3、重点、难点

  重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。

  难点:理解二元一次方程组的解的含义。

  二、教法

  启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。

  2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。

  3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。

  4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。

  五、教学反思

  生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。

  附:板书设计

  8、1二元一次方程组

  xy=222xy=40

  二元一次方程二元一次方程组

  二元一次方程的解二元一次方程组的解

七年级数学说课稿2

  一、教材分析

  (一)教材的地位和作用

  方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材。本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭。

  (二)教学内容

  “从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步。然后再通过具体实际问题所列方程,介绍方程等概念。新教材的编写更加体现了数学的应用价值。

  (三)教学重点难点

  由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立。而本节中学生可能感到困难的仍是实际问题相等关系的建立。

  二、目标分析

  依据课程标准的要求,确定以下目标:

  (一)知识与技能目标

  1。了解方程等基本概念。

  2。会根据具体问题中的数量关系列出方程。

  (二)过程与方法目标

  经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。

  (三)情感目标

  让学生进一步认识到方程与现实世界的密切关系,感受数学的价值。培养学生获取信息,分析问题,处理问题的能力。

  三、教法与学法分析

  根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情。并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变。

  四、教学过程分析

  教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

  ②初步具有解方程中的化归意识;

  ③培养言必有据的思维能力和良好的思维品质。

  教学重点用等式的性质解方程。

  知识难点需要两次运用等式的性质,并且有一定的思维顺序。

  教学过程(师生活动)设计理念

  复习引入解下列方程:

  (1)x+7=1.2;

  (2)在学生解答后的讲评中围绕两个问题:

  ①每一步的依据分别是什么?

  ②求方程的解就是把方程化成什么形式?

  这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

  探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

  例1利用等式的性质解方程:

  0.5x-x=3.4(2)

  先让学生对第(1)题进行尝试,然后教师进行引导:

  ①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

  ②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

  然后给出解答:

  解:两边减0.5,得0.5-x-0.5=3.4-0.5

  化简,得

  -x=-2.9

  两边同乘-1,得

  x=-2.9

  小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化。

  你能用这种方法解第(2)题吗?

  在学生解答后再点评。

  解后反思:

  ①第(2)题能否先在方程的两边同乘“一3”?

  ②比较这两种方法,你认为哪一种方法更好?为什么?

  允许学生在讨论后再回答。

  例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。现已做了80套成人服装,用余下的布还可以做几套儿童服装?

  在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

  解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

  80x×3.5+1.5x=355

  化简,得

  280+1.5x=355

  两边减280,得

  280+1.5x-280=355-280

  化简,得

  1.5x=75

  两边同除以1.5,得x=50

  答:用余下的布还可以做50套儿童服装。

  解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

  问题:我们如何才能判别求出的答案50是否正确?

  在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355

  方程的左右两边相等,所以x=50是方程的解。

  你能检验一下x=-27是不是方程的解吗?不同层次的.学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

  这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

  解题的格式现在不一定要学生严格掌握。

  课堂练习①教科书第73页练习第(3)(4)题。

  ②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

  建议:采用小组竞赛的方法进行评议

  小结与作业

  课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

  (1)这节课学习的内容。

  (2)我有哪些收获?

  (3)我应该注意什么问题?

  ②教师对学生的学习情况进行评价。

  ③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

  本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3

  ②选做题:教科书第73页第4(3)题,第74页第10题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点。

  2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识。新课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式。本设计在这方面也有较好的体现。

  3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线。对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点。本设计充分体现了这一特点。

七年级数学说课稿3

各位老师:

  我说课的题目是《有序数对》.该节内容是人教版义务教育实验教材(供天津用)七年级《数学》上册第三章《平面直角坐标系》的第一节(教材86页-88页).我将从以下五个方面对本节课的设计进行说明.

  第一方面:教材分析.

  本节内容是本章的起始内容,是学生学习了条形统计图和折线统计图的基础上的学习,为以后学习直角坐标系和研究函数的运动变化奠定知识基础.虽是初始内容,但是学生在实际生活中用“数对”表示点或事物的位置的意识以很浓,只是谈到“有序”感到陌生.这些知识积淀,为完成本节课内容的学习做了强有力的支撑.同时本节内容有利于增强学生的数学符号感,是“数”向“形”的正式过渡,使学生充分认识到数学是描述解决实际生活中事物、问题的重要工具,树立学好数学的信心,提高分析问题、解决问题的能力.

  第二方面:目标分析.

  根据课标的要求和本节内容的特点,我从知识与能力、过程与方法、情感价值观三个方面确定本节课的目标.

  一、知识能力目标:

  1.理解有序数对的概念,能说出一对有序数对的实际含义.

  2.根据一对有序数对在坐标平面内能确定一个点,根据一个点能写出一对有序数对与它对应,渗透一一对应关系.

  二、过程方法目标:

  1.通过研究实际生活中座位位置的确定方法的活动,让学生树立“数“与”“形”统一的数学思想.

  2.通过研究有序数对的含义,培养学生善于发现问题,解决问题的意识,提高归纳整理信息的能力.

  三、情感价值目标:

  1.通过参于活动,同学间协商探究,培养学生的合作交流的意识和探究知识的精神.

  2.通过对有序数对的研究学习,进一步感悟数学与实际生活密切相关,树立刻苦学习品质.

  3.通过本节课的学习培养学生科学、严谨的学习品质.

  结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定本节课的教学重难点:

  1.教学重点:理解有序数对的含义,熟练、科学的达到“数”与“形”的统一.

  2.教学难点:“有序数对”中“有序”的含义.

  为了更好凸显重点突破难点,我在学生已有知识、能力的基础上,通过确定座位、找路线等活动,探究有序数对的含义.同时借助多媒体课件合理设疑、启发引导、解疑点拨以达到预期的目标.

  第三方面:教、学的方法和手段.

  我认为:教师的教和学生的学是课堂教学活动的基本元素.教师的教是围绕着学生的学展开的,学生的学是在教师的教之下进行的.数学研究性活动成为数学课堂教学的载体.课堂教学是师生之间、学生之间交往互动和共同发展的过程.为此,我采用合作探究式教学方法进行教学.

  一、教法

  我作为学生学习的组织者、引导者、合作者,注重启发学生自主学习,结合目标,针对我班学生的认知水平,我借助多媒体课件和教材插图合理设疑、巧妙点拨.适情设计梯度,增强课堂教学的趣味性和直观性,激发学生求知欲望,有效渗透数学思想、方法,提高课堂教学效益.我将采用以下方法:

  1.引导发现法:在活动中让学生观察所给图片,带着问题思考、探究知识,体悟有序数对的作用,感触数学与实际生活密切相关,调动参与学习活动的积极性和主动性.

  2.适当梯度,合理设疑法:提问是课堂教学的基本形式,它引导学生思考探究,使学生的思维条理化.我结合目标和学生个体间的差异,合理设疑、提问,引导学生完成学习.

  3.合作交流,协作探究法:学生是学习的主人,是课堂学习的主体.在我的引导下,采用学生个体探究、小组内交流的学习形式交叉进行,以逐步突破重难点,让学生体验成功,增强合作意识,树立学习信心.

  4.练习巩固法:合理选配习题,创设问题情境,让学生检测是否达标.以此提高学生运用知识、解决问题的

  能力.

  二、学法

  学生是否学会、会学成为检验课堂教学效果的标准.在本节课中我尽可能多的给学生提供参与学习活动的时间和空间,让他们体会知识的产

  生过程,学会学习.因此我注重以下学法的指导:

  1.观察分析法:给学生提供材料,让学生进行观察、分析.

  2.探究归纳法:通过学生个体研究和小组交流协作进行探究归纳,真正体会有序数对的含义,从中领悟知识的产生,归纳规律.

  3.练习巩固法:让学生树立数学重在应用的意识,检验学生掌握情况,找出差距,对症下药.

  第四方面:本节课的'教学过程我设计了以下四个环节:

  第一环节:明确目标,创设情境,导入新课

  首先我请同学说出自己在班上的座位的位置,就一名同学说的例如:“3排4列”进行讨论,让学生认识它的不足,补充完善,即从左向右数,从前向后数等.再次描述自己的位置,从而体会到:①数对中数应有一定的顺序,是非常必要的.②在每一对数对中每一个数所表示的实际意义.根据学生的讨论、发言马上引出本节课题和本节课要达到什么目标,把课堂教学推进,把学生的思维推向深入.

  第二环节:协作商讨,归纳总结,达成目标

  结合教材中的插图,“电影院找座位”.我设置了问题是:①9排7号与7排9号所表示的实际意义是什么?②在实际生活中,诸如表示座位的数对第一个数字表示什么?第二个呢?③这两个人谁是对的谁是错的?请帮助错的人找到正确的座位.通过问题,学生动脑去思考、探究、归纳,真正体会“有序数对”的含义及有序的重要性.

  接下来我出示有序数对(2,4)、(4,2)设问这两个数对中的数字相同,只是他们呈现的顺序不同,结合我班的座位说说他们有什么关系?他们表示的是同一个座位吗?问题解决后我马上又写(3,3),这个数对中的“3”分别表示什么意义?有几个座位和他对应?

  第三环节:应用新知,体验成功

  在目标的指导下,针对上环节中学生的反馈,我在此环节中设计了两道习题:

  1.在黑板上画如下图样式的坐标系:

  (1)如果它代表我班同学们的座位,请同学根据给出的有序数对(1,3);(3,4);(5,3),(6,2)等确定座位.

  (2)根据我指的座位用有序数对表示.

  2.教材88页的练习.此题是用有序数对表示从甲地到乙地的路线,让学生代表说出路线坐标,让同学去画.在此题中有学生可能说出如(2,5);(3,4);(4,3);(5,2)这样的路线,此条路线是斜的它从数学角度无论是有序数对还是描点都是正确的但在实际生活中这样的路线行的通吗?让学生讨论.这样让学生再次体会学习数学的用途.

  第四环节:完善知识体系,布置作业.

  1.让学生用自己的语言概括本节课我们学习了什么知识?有什么收获?

  2.作业:教材91页1、2题以此再次巩固,进一步内化学生的知识体系和提高能力.

  本节课板书的内容比较少,板书有序数对和实际举例的有序数对目的是突出“有序数对”的概念,让学生从感官上得以完善,建立简单的坐标系是对本节课知识的巩固同时为下节课学习平面直角坐标系做下基础.

  第五方面:本节课的预期评估:

  本设计未在课堂中实施,凭借我的经验和对我校学生认知水平的了解,可能在课堂中有以下几点困惑:

  1.在确定座位位置时可能只用排或列表示.此时我不忙于纠正,而是让他自己去实际寻找,从中发现问题,解决问题.在此要多让学生发言,此环节是学习好本节课的关键.

  2.因为本节课给学生的空间很多,课堂上的时间结构相对难控制有可能就完不成教学任务,因此我力争使自己的提问更有针对性、学生能够表达清楚的不在做陈述、做好学生讨论问题的指导不让学生的思维脱离轨迹等措施来调控时间.

七年级数学说课稿4

尊敬的各位领导、各位老师:

  下午好!

  今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价.

  一,教材分析

  本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础.它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

  结合本节课的地位和作用,设计本节课的教学目标如下:

  1、知识目标:

  (1)探索并掌握不等式的基本性质,能解简单的不等式;

  (2)理解不等式与等式性质的联系与区别;

  2、能力目标:

  (1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:

  (2)通过探索过程,渗透类比,分类讨论的数学思想;

  3、情感目标:

  (1)培养学生的钻研精神,同时加强同学间的合作与交流;

  (2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,

  (3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

  结合本节课的教学目标,确定本节课的

  重点是不等式性质及简单应用.

  难点是不等式性质的探索过程及性质3的应用.

  为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.

  二、教法分析,教学手段的选择:

  为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

  三、学法指导:

  由于七年级学生有比较强的'好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.

  四、教学过程设计

  基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:

  1.创设情境,类比猜想

  提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?

  2年前,我比你大还是比你小,大几岁,小几岁?

  类比等式的性质1,不等式有类似的性质吗?

  【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

  2、举例说明,验证结论

  设计小活动:你说我验

  同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

  【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

  学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。

  3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

  不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

  【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生

  为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.

  师生活动:由学生概括总结不等式的性质2,3,同时教师板书.

  4、例题讲解,探究新知

  例1将下列不等式化成“xa”或“xa”的形式

  (1)x-5-1(2)-2x3

  解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4

  (2)根据不等式的基本性质3,两边都除以-2,得X-3/2

  【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

  【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

  例2:对习题1进行适当的改编:已知ab,填空并连线:

  (1)a-3____b-3根据不等式的性质1

  (2)6a____6b根据不等式的性质2

  (3)-a_____-b根据不等式的性质3

  (4)a-b____0

  教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

  注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

  【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

  5、小试牛刀:断正误,正确的打“√”,错误的打“×”

  ①∵∴( ) ②∵∴( )

  ③∵∴( ) ④若,则∴,( )

  学生活动:一名学生说出答案,其他学生判断正误.

  答案:①√ ②× ③√ ④×

  【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

  6、拓展思维,培养能力

  比较2a与a的大小

  【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

  7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1

  (2)6a____6b根据不等式的性质2

  (3)-a_____-b根据不等式的性质3

  (4)a-b____0

  教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

  【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×

  【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小

  【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

七年级数学说课稿5

  一、说教材:

  本节课主要是在学生学习了有理数概念的基础上,从表达方位这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、说教学目标:

  知识与技能:使学生理解数轴的三要素,会画数轴;能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的`有理数,理解所有的有理数都可以用数轴上的点表示。

  情感价值观:向学生渗透数形结合的数学思想,知道所有有理数可以在数轴上表示,培养学生对数学的学习兴趣。

  过程与方法:分层次教学,讲授、练习相结合。

  三、说教学重、难点:

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

  难点:正确理解有理数与数轴上点的对应关系。

  四、说学情:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五、说教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

七年级数学说课稿6

尊敬的领导、老师们:你们好

  今天我说课的题目是北师大版数学七年级下册第四章第3节《探索三角形全等的条件》第3课时。下面,我将从教材分析、教学方法及教学过程等几个方面对本课的设计进行说明。

  一、教材分析(一)本节内容在教材中的地位与作用。

  《探索三角形全等的条件》对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的。本节课中的内容是《探索三角形全等的条件》中的最后一个判定,在学习新知识中我们复习前面所学的SSS,ASA,AAS,也为后面的尺规作图打好基础。另外也对后面的三角形的'相似等知识学习提供了保障。本节课的知识具有承上启下的作用。

  (二)教学目标

  在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

  (1)知识目标:经历用两角一边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边角边”,并能应用它们来判定两个三角形是否全等。还对两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等进行探索。

  (2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。有关数学题的答题规范化的培养。

  (3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。

  (三)教材重难点

  学情分析:

  学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。

  鉴于以上学情分析,我把本节课的重难点设置为:本节课的重点是掌握三角形全等的条件“SAS”,并能应用它们来判定两个三角形是否全等。探索“两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等”是难点。我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

  (四)教学具准备,教具:相关多媒体课件;

  学具:剪刀、纸片、圆规、直尺。

  二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。并且用导学案的形式让学生对本节课内容很好的把握。

  三、教学过程(一)温故知新

  1.我们在前面学过____________________方法判定两个三角形全等。

  (二)设疑引题,激发求知欲望

  首先,我出示一个实际问题:

  问题:小颖作业本上画的三角形被墨迹污染,她想画出一个与原来完全一样的三角形,她该怎么办呢?你能帮帮小颖吗?

  这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

  (三)引导活动“想一想”,揭示知识产生过程

  数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。探索三角形全等条件重要学生的探索能力的培养。

  活动一:让学生通过复习回顾已学过的判断两个三角形全等的方法引出本节课所要探究的两边一角能不能判断两个三角形全等。

  活动二:让学生首先通过画图对两边及其夹角对应相等的情况进行对比来判断所画的两个三角形是否全等。特别的小组用叠合的方法来进行判断三角形全等,由此得到判定两个三角形全等的方法4(两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”)。

  活动三:在学生画出有两边及其一边的对角对应相等的两个三角形的图上,让学生观察,看画出的三角形是否一定全等。由此得出结论,这样的两个三角形不一定全等。老师引导学生得出结论,并揭开秘密,针对此结论用一个生活中的例子来进行巩固。联系实际:请同学们观察下面图形中三角形全等吗?由于此图来自本城市的重要工程,所以学生很快能理解两边分别相等且其中一组等边的对角分别相等的两个三角形不一定全等的结论。并说明数学在实际生活中是存在的,并可以应用数学解答实际问题。

  (四)练一练,用了三个例子来巩固“边角边”的应用。由老师引导--学生解决—学生点评—教师点评的流程讲解练习。让学生知道一般的我们写三角形的有关题时,对应顶点应写在对应的位置上,并且要知道每一步的理由,但不一定要写出理由来。链接中考要求对学生的答题规范化能获取高分。比如在第三个题中:3.在△ABC中,AB=AC,AD是∠BAC的角平分线。那么BD与CD相等吗?为什么?回答相等,然后再说明理由。这样才规范。还有公共边的写法,第一题中就写成“AC=CA”而第三题的公共边应写成AD=AD.中考答题规范化应该从七年级抓起。

  (五)作业布置:完成学案剩下的题。

  (六)课堂小结

  (1)本节课你学了什么?

  (七)老师的赠言。每一节课都送给学生一句有关学习的警句,促进学生对学习兴趣培养,让他们从“你要学”转化为“我想学”。

  附:

  复习:SSS,ASA,AAS

  结论:两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”.

七年级数学说课稿7

各位评委、各位老师:

  大家好!我是来自钱场中学的陈芬老师。我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。

  下面,我从以下几个方面对本节课的教学设计进行说明。

  一、教材分析

  1、教材的地位和作用

  本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

  2、教学重点和难点

  重点:多边形的内角和与外角和

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  二、教学目标分析

  1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

  2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

  3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

  4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

  三、教法和学法分析

  本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

  1、教学方法的设计

  我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  2、活动的开展

  利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

  3、现代教育技术的应用

  我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

  四、教学过程分析

  1、本节教学将按以下六个流程展开

  2、教学过程

  互动环节互动内容设计意图

  1、创设情境

  引入新课

  (1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?

  (2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?

  通过今天的学习,我们就能明白其中的道理,引出课题。

  这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。

  2、合作交流

  探索新知

  (1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

  (2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

  (3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

  (4)学生分组选代表展示小组的`探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

  学生可能找到以下几种方法:

  ①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;

  ②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;

  ③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

  教师在学生展示完后提问:

  ①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?

  ②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

  从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。

  通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。

  3、自主探究

  得出结论(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?

  学生先独立思考,分组讨论,然后再叙述结论。

  (2)问题:依此类推,n边形的内角和等于多少度呢?

  让学生自己归纳总结,得出n边形的内角和公式为(n—2)180°。

  从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。

  互动环节互动内容设计意图

  4、应用新知

  尝试练习(1)想一想:

  如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。

  (2)算一算

  ①教材89页练习1、2。

  ②四边形的外角和等于多少度?

  ③五边形的外角和,六边形以及n边形的外角和呢?

  (3)读一读

  先让学生阅读教材89页最后两段内容,然后我再用课件展示。

  通过做例题和练习来巩固新知识。

  先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。

  这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。

  5、归纳总结

  形成体系

  我从以下几个方面引导学生进行小结:

  (1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?

  (2)这节课我们学习了哪些知识和方法?你有什么收获?

  让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。

  6、分组竞赛

  升华情感我制作了A、B、c、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。

  在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。

  五、评价分析

  1、注意评价内容的多元化

  通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。

  2、注重对学生学习过程的评价

  在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。

  六、设计说明

  1、指导思想

  根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。

  2、关于教材处理

  本教案设计时,我对教材作了如下改变:

  ①将教材例1作为练习中的“想一想”,由学生自已尝试解答;

  ②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

  ③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。

  以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!

七年级数学说课稿8

  尊敬的各位专家评委、各位同仁:

  大家好!我是安溪县湖上中学数学教师张象稳,能参加这次说课评比活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是合并同类项。

  以下我就五个方面来介绍这堂课的说课内容:

  一、 教材分析

  (一)。教材地位、作用

  本节课选自华东师大版《数学》七年级上§3.4节第2课时内容,是一堂探究活动课。是在结合学生已有的生活经验,引入用字母表示有理数,继而介绍了代数式、代数式的值、整式、同类项以及有理数运算律的基础上,对同类项进行合并的探索、研究。()合并同类项是本章的一个知识重点,其法则以及去括号与添括号的法则应用是整式加减的重点,是以后学习解方程、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

  (二)、教学重点、难点

  1、重点:合并同类项的法则的运用。

  2、难点:合并同类项的法则的形成过程。

  (三)、教学目标

  根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:

  1.知识目标

  (1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。

  (2)、能运用合并同类项的法则进行合并同类项。

  2.能力目标

  (1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。

  (2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。

  (3)、通过知识梳理,培养学生的`概括能力、表达能力和逻辑思维能力。

  3.德育目标

  (1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。

  (2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。

  4.美育目标

  通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。

  二、 教学方法、手段

  1. 教学设想

  突出以学生的"数学活动"为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。

  2. 教学方法

  利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。

  3. 教学手段

  利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。

  三、学法指导

  自主探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结

七年级数学说课稿9

  我说课的内容是

  泰山版九年义务教育七年级教科书数学上册第二章第二节“数轴”。

  一、教材分析:

  本节课主要是在学生学习了有理数概念的基础上,从温度计表示“温度高低”这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

  数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学习不等式的解法、函数图象及其性质等内容的重要的基础知识。

  二、教学目标:

  根据新课标的要求以及七年级学生的认知水平,我制定出如下的教学目标:

  1. 使学生理解数轴的三要素,会画数轴。

  2. 能将“已知的有理数在数轴上表示出来”,能说出“数轴上的已知点所表示的有理数”,理解“所有的有理数都可以用数轴上的点表示”

  3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三、教学重点和难点:

  “正确理解数轴的概念”和“有理数在数轴上的表示方法”是本节课的教学重点,“建立有理数与数轴上的点的对应关系(数与形的结合)”是本节课的教学难点。

  四、学情分析:

  ⑴知识掌握上,七年级学生刚刚学习正负数,对正负数概念的理解不一定很深刻,许多学生容易造成知识遗忘,可以给与适当的巩固复习。

  ⑵学生学习本节课的知识障碍。对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应给以深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征的局限性,以及学生好动,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中,我一方面要运用直观的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  五、教学方法:

  七年级学生往往对直观具体的图形很感兴趣,因此我使用了教具—温度计和多媒体辅助教学。同时教学过程中我采用“启发式教学法”和“互动式教学法”,让整节课以观察、思考、讨论的形式贯穿始终。加强师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、多交流”的合作式学习方法。教学中为学生提供更多的活动机会和空间,让学生在动脑、动手、动口的同时获得体验和发展。

  为此,我设计了以下七个教学环节:

  (一)温故知新,激发情趣

  (二)得出定义,揭示内涵

  (三)手脑并用,深入理解

  (四)启发诱导,初步运用

  (五)反馈矫正,注重参与

  (六)归纳小结,强化思想

  (七)布置作业,引导预习

  六、教学程序设计:

  下面是教学过程的具体设计-------------

  (一)温故知新,激发兴趣:

  首先复习:有理数包括那些数?

  学生回答后让大家思考:你能说出一些用刻度表示这些数的例子吗?

  (学生会举出很多例子),但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计(展示准备好的教具),并提问:

  (1)零上5°C用 5 表示。

  (2)零下10°C 用 -10表示。

  (3)0°C 用 0 表示。

  然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:“数轴”。结合实例,使学生体会到数学来源于现实生活,从而对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  (二)得出定义,揭示内涵:

  教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

  (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

  画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”

  通过小组交流得到数轴的定义:规定了原点、正方向和单位长度的`直线叫做数轴。

  至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

  (三)手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

  (1)------(8)

  (3)(6)(7)三个图形从数轴的三要素出发,学生可能出现错误判断,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

  学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

  我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)启发诱导,初步运用:

  有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

  安排课本30页的例1,

  利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上 2、要把数标在点的上方

  通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

  当然,此题还可以再说出几个有理数让学生去标出点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

  (五)反馈矫正,注重参与:

  为巩固本节的教学重点让学生独立完成:

  1、课本30页练习1、2

  2、课本30页3题(给全体学生以示范性让一个同学板书)。

  为向学生进一步渗透数形结合的思想让学生讨论:

  (六)归纳小结,强化思想:(我采用引导式小结)

  1、为了巩固本节课的重点,提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

  让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

  (七)布置作业,引导预习:

  为面向全体学生,安排如下:

  1、全体学生都做课本32页1、2。

  2、最后布置一个思考题:与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?(来引导学生养成预习的学习习惯)

  七、板书设计:(略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动。

  我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,只有让学生学会学习,老师的引导价值才会得到体现。

七年级数学说课稿10

  今天,我说的教材是北师大版七年级数学下册。

  首先,我就《数学课程标准》对教材的要求及设计理念谈谈自己的认识与体会。

  1.课标对教材的要求知识与技能

  ●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。

  ●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。

  ●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。

  过程与方法

  ●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。

  ●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

  ●经历运用数据描述信息、作出推断的过程,发展统计观念。

  ●经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。

  ●初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。

  ●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。

  ●学会与人合作,并能与他人交流思维的过程和结果。

  ●初步形成评价与反思的意识。

  情感与态度

  ●能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

  ●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

  ●形成实事求是的态度以及进行质疑和独立思考的习惯。

  以上三个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。

  2.教材设计理念

  (1)数学学习素材来源于学生的现实,呈现方式丰富多彩对于七年级学生来说,学生的现实或许更多地意味着与他们直接相关的、发生在他们身边的、可以直接接触的事和物,以美丽的童话故事、有趣的小游戏、小谜语、卡通、漫画、图片、表格,有时伴有些文字等各种丰富多彩的学习内容,使得学生对于阅读教材,没有枯燥感、恐惧感,又是他们乐到接受和愿意思考的,进而产生一种愿意甚至喜爱的积极情感。(2)教材关注了数学知识的形式与应用,重要的思想概念和思想方法螺旋上升。力图采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以对相关问题的研究作为开始,它们是学生了解与学生这些知识的有效切入点。随着一个个问题的研讨,学生经历了真正的“做数学”和“用数学”的过程,提高能力。(3)为学生提供了探索、交流的时间与空间根据学生已有的知识背景和活动经验,教材提供了大量的操作、思考与交流的机会,如提出了大量富有启发性的问题,设置了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流形成新的知识。(4)内容设计具有弹性,面向全体学生,让“人人学到有价值的数学”,关注了不同学生的数学要求。例如就同一问题情境提出不同层次的问题或开放性的问题,使“人人都能获解必需的数学”,对于不同的学生而言,由于他们所处的文化环境、家庭背景和自身的思维方式等方面存在差异,他们头脑中所理解的数学带有日程的个性色彩,通过数学活动,而使“不同的人在数学上得到不同的发展”。

  二、下面我结合北师大版七年级数学下册教材,从教材内容、编者意图与编写体例方面谈谈自己的体会

  1、教材内容(1)数与代数——第一章整式的运算与第六章变量之间的关系教材中呈现给学生大量丰富的现实背景,并以学生已有的经验为出发点,关注知识的形成过程,关注学生的学习兴趣和信心,关注学生探究和运用数学能力的发展。(2)空间与图形——第二章平行线与相交线、第五章三角形及第七章生活中的.轴对称教材突出空间与图形的知识背景,吧课程内容与学生的生活经验有机融合,使学生更好地认识、理解和把握自己赖以生存的空间,发展学生的空间观念和推理能力。(3)统计与概率——第三章生活中的数据与第四章概率由于内容充满趣味、吸引力,激发了学生学习数学的兴趣,动手收集与呈现数据,做概率游戏,点燃了学生的思维火花,培养学生的积极情感体验。(4)实践与综合应用——课题学习:制作人口图2.编者意图(1)激趣方面编者通过每章节的主题图,除了让学生了解本章节的主要内容外,更让学生体会生活中大量存在的数学以及数学知识在生活中的广泛应用,体会到数学的文化价值,利用主题图中有趣的图形、问题激发学生学习数学的兴趣,体会数学的趣味与数学美,创设了情境,揭示了主题,激发了学习热情。编者还通过“读一读”等栏目,让学生了解更多的数学,开拓了学生视野,增强学生学习数学的兴趣。(2)培养能力方面编者在提供学习素材的基础上,依据学生已有的知识背景和活动经验,提供了大量的操作、思考与交流的学习机会。如“做一做、”“想一想”、“议一议”等栏目,同时要求学生通过自主探索以及与同伴交流的方式,形成新的知识,包括归纳法则、描述概念、总结学习内容等,发展学生观察、归纳、类比、概括等能力,进而发展学生的推理能力和有条理的表达能力和养成良好的学习习惯。

  三、下面我结合七年级下册第一章《整式的运算》谈谈我对教材的理解

  1.基本要求①经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。②经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。③了解整数指数幂的意义和正整数指数幂的运算性质,了解产生整式产生的背景和整式的概念,会进行简单的整式加、减、乘、除运算(其中多项式相乘仅限一次式相乘,整式的除法只要求列复项式除以单项式,结果是整式)。④会推导乘法公式:了解公式的几何背景,并能进行简单的计算。⑤在解决问题的过程中了解数学的价值,发展“用数学”的信心。

  2.设计思路为了达到上述教学要求,教材设置了大量的实际背景,一方面是让学生体会学习整式的一些有关运算的的必要性,另一方面使学生经历实际问题“符号化”的过程,培养符号感。教材几乎为每一种整式的运算都设置了具体的探索活动,在探索活动中体会整式运算的规律,把握其算理。本章学习活动的设置,关注学生在符号感表达、有效运算合并同建项,去拓展、探索规律等方面技能和能力的螺旋上升。

  3.本章教材的重点是整式及其运算,乘法公式,难点是整式次数的确定,整式的运算意义与算理的理解,为了达到突出重点,突破难点,教材特别突出以下几个方面:(1)以“问题情境——数学模型——求解模型”为主要线索呈现整式及其运算的内容,注重以问题情境中寻找数学关系,运用符号进行表示的过程。(2)以“观察——归纳——类比——概括”为主要线索呈现运算法则的探索过程,注重推理能力和表达能力的培养。(3)注重整式运算每一步的算理,重视幂的意义、乘法分配律等作用,渗透转化、类比的思想。(4)从面积的角度解释多项式乘法、平方差公式、完全平方公式等内容,并从直观上理解这些内容,渗透数形结合思想。

  4.从前后知识联系来认识《整式的运算》(1)本章知识是七年级上册第二章《有理数及其运算》及第三章的字母表示数》的后续与延伸,又是将来学习分式、表式及函数方程、不等式中有关计算的基础,充分体现了新课标所提倡的分段要求、逐渐渗透、螺旋上升的设计理念。(2)从知识的整合来看,纵向联系,整试的运算可与前面所学的“求代数式的值”“解方程”等结合应用,提高学生的运算能力,与后面的函数知识中的运算结合,提高分析问题的能力。横向看,整式运算又可与几何知识、推理证明相结合,发展学生的推理能力。

  四、下面结合具体课例《完全平方公式》谈谈我的一些教学设计具体见课件教学设计思路:

  1、在教学的组织形式上,通过独立学习、小组讨论、全班交流等多种形式,相信学生并为学生提供充分展示自己聪明才智的机会,并且在此过程中有利于我发现学生分析问题、解决问题的独到见解及思维上的误区,以便指导。探索多项式乘以多项式的法则的过程:通过拼图游戏引出法则,由于所拼的图形的方式含有多种方法,而面积也会有多种表示方法,因而让学生独立思考、小组讨论,然后让学生充分展示自己的想法。通过对比学生都有一个直观的认识,但大多数同学对其算理不是很清楚,因而学生思维存在不足,这时需教师及时引导,有意识地从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,渗透转化思想及体会乘法分配律的重要作用。

  2、在教学评价策略上,我经常把激发学生学习热情和获得学习能力放在首位。通过用各种启发、激励的语言以及组织小组合作学习、帮助学生形成积极主动的求知态度。以上是我对北师大版七年级下册的教材的理解,不足之处请同仁们多多指教,谢谢!

七年级数学说课稿11

  各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是<义务教育课程标准实验教科书>人教版,七年级下册第七章第三节的内容,分两课时,我今天说的是第二课时。对本节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计、教学评价设计六个方面进行阐述。

  一、背景分析

  1、学习任务分析:

  《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的重点。

  2、学生情况分析:

  (1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。

  (2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。

  二、教学目标设计

  依据新课标的要求,我设计本节课的教学目标为以下四个方面:

  知识与技能:

  通过实验探索多边形内角和公式。

  数学思考:

  1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

  2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。

  解决问题:

  通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。

  情感态度:

  通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。

  三、课堂结构设计

  整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。

  四、教学媒体设计

  七年级学生思维活跃,容易接受新鲜事物,对直观的`东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出重点突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。

  五、教学过程设计:

  1、创设情景:

  我设计了两个情景:

  情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。

  情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。也易于学生接受。

  2、建立模型:

  活动1:

  猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

  议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”——即通过添加辅助线的方法,把四边形分割成三角形。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。

  想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

  活动2:

  选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

  活动3:

  想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于以下不同形式的公式

  ①(n—2)180° ②180°n—360° ③180°(n—1)— 180°

  通过任意多边形转化为三角形的过程,发展学生的空间想象能力。通过多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。在探索的过程中,再一次发展学生的推理能力和表达能力,在交流与合作的过程中,感受合作的重要性。

  3、解释与应用

  (1)智慧大比拼。通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。目的是检验学习效果,让学生经历运用知识解决问题的过程,发展学生的推理能力和语言表述能力,给学生获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。

  (2)情系奥运。引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

  4、拓展与探究

  小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

  5、反思与作业

  请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。

  分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。

  六、教学评价设计:

  学生学习水平评价:学生是否积极参与;是否独立思考;是否富于想象;是否敢于否定;是否兴趣浓厚;是否善于合作;能否主动探索;能否自由表达。

  学生学习效果评价:通过解释与应用,拓展与探究两个环节初步了解部分学生对本节知识的掌握情况,课后通过分层次作业,三天后进行的小测验,了解学生对本节内容的掌握情况,及时发现问题,对教学中的疏漏进行弥补。

  教师在教学过程中要及时根据学生回答,让学生之间进行互评,反馈,同时对于不同层次的学生和不同难度问题,教师要及时的给予反馈和评价。另外,通过学生评价自己和他人的表现,教师也要进行自我反思。

七年级数学说课稿12

  一、说教材

  方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。

  本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也对今后学习其他方程、不等式及函数具有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。

  1、教学目标

  (1)知识目标:

  1、掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程。

  2、了解一元一次方程解法的一般步骤

  (2)、能力目标:

  经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题、解决问题的能力,

  (3)、情感目标:

  1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

  2、通过埃及古题的情境感受数学文明

  2、教学重点:通过“去分母”解一元一次方程

  3、教学难点:探究通过“去分母”的方法解一元一次方程

  二、说教法:

  在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。

  我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

  我的教学设计的指导思想是:

  1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。

  2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

  三、说学法

  教学活动流程图

  活动1列方程解决实际问题

  活动内容和目的:创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一。

  活动2解含有分母的一元一次方程

  活动内容和目的:以学生已有的关于等式性质的数学知识基础,探索利用“去分母”的方法解一元一次方程。

  活动3“去分母”的方法解一元一次方程

  活动内容和目的:用“去分母”的方法解一元一次方程,掌握“去分母”的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤。

  活动4小结

  活动内容和目的:总结本节收获

  活动1、创设问题情境:

  引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了,在文书中记载了许多有关数学的问题。

  问题一:

  一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。

  (1)能不能用方程解决这个问题?

  (2)能尝试解这个方程吗?

  (3)不同的解法有什么各自的特点?

  设计意图:

  1、利用列方程、解方程解决实际问题,再一次让

  学生感受方程的优越性,提高学生主动使用方程的意识。

  2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是“去分母”这一步骤的必要性;同时,让学生认同“去分母”是科学的、可行的,明确为什么能去分母,这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现“方程两边同时乘以所有分母的最小公倍数”这一方法,也首次由学生自行突破了难点。

  3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力。

  活动2、下面方程(见第96页中间)可以怎样求解?

  观察方程,回答教师提出的问题并对学生的回答进行总结:

  先去分母,

  怎样去分母?

  解去掉分母后的这个方程

  归纳总结去分母的方法:

  在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即“等式两边同时乘同一个数,结果仍相等”呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点。巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。

  通过对错例的辨析,加深学生对“去分母”的认识,避免解方程时出现类似错误。

  去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决,通过在解方程过程中“去分母”这一步骤体会转化思想。

  活动3、解方程(见第97页例题3(2))

  设计意图:

  用实践来加深对“去分母”的方法解一元一次方程的认识。

  结合本题思考,能总结解这种方程的.一般操作过程吗?

  巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定。了解对方程的每一次变形都是为了将方程最终化归为x=a的形式。解题时应根据题目特点,合理选择解题步骤。

  小结活动4总结

  (1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法;

  (2)学生是否掌握了一元一次方程解法的一般步骤;;

  (3)学生是否能准确表达自己的观点;

  最后复习、巩固本节的知识,学会总结反思。

  四、评价分析

  数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成功的喜悦,从而激发学生的学习动力。本节数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异;这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益;通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。

七年级数学说课稿13

  一、说教材

  首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。

  三、说教学目标

  根据以上对教材的`分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。

  (二)过程与方法

  在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。

  (三)情感态度价值观

  在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。

  根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》

  利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

  学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。

七年级数学说课稿14

  一、教材分析:

  1、教材的地位和作用

  本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

  2、教学目标

  ⑴、知识与技能

  帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。

  ⑵、教学思考

  在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。

  ⑶、解决问题

  通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。

  ⑷、情感态度与价值观

  通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。

  3、教学重点、难点与关键:

  重点:平方根的概念和性质难点:平方根的概念和表示的理解。

  关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

  二、学情分析

  根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。

  1、学生的现有基础

  在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。

  2、学习的现状

  此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

  三、说教法与学法

  教法:

  (1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.

  (2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.

  (3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.

  学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的'指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.

  四、教学程序:

  (一)创设情境,激发兴趣

  首先,我动画的形式,用多媒体示出问题情境:

  (1)()2=9,()2=9;()2=0.64,()2=0.64.

  (2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;

  (3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。

  总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。

  (二)合作交流,理解概念

  1、填空:

  (1)32=(),(-3)2=(),22=(),(-2)2=(),02=()

  (2)()2=&

  nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?

  2、想一想

  (1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();

  (3)负数______平方根(填“有”或“没有”)

  (三)综合训练,突出重点

  1、出示例3求下例各数的平方根:

  (1)64;(2);(3)0.0004;(4)(-25)2;(5)11

  2、为了加深对平方根的理解,我出示课本P42页“想一想”:

  (1)()2=();()2=();()2=()(2)对于正数a,()2=()

  (四)课后小结

  (五)作业P47第3和第4题

  五、板书设计平方根

  平方根概念:……例3:---------------

  开平方概念:……解:(板演详细解题过程)……

  法则:……

  六、设计说明:

  (一)、指导思想:

  依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。

  (二)、关于教法和学法

  采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计

  在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

  ①注重目标控制,面向全体学生,启发式与探究式教学。

  ②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

  ③注重师生间、同学间的互动协作,共同提高。

  ④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

七年级数学说课稿15

  一、教材分析

  1、教材的地位也作用

  本节课主要是探究点或图形在平面直角坐标系中平移所引起的点坐标的变化规律。是在上一章学习了点或图形平移及其性质的基础之上,用坐标刻画了平移变换,从数的角度进一步认识了平移变换,这就是用代数方法研究几何问题,体现了平面直角坐标在数学中的作用。为后续学习利用平移变换、坐标变换探究几何性质以及综合运用多种变换(平移、旋转、轴对称、相似、位似等)进行图形设计打下基础。

  2、教学重点、难点

  通过分析,我们看到“用坐标表示平移”在教材中起到承上启下的作用,有着广泛的应用,因此本节课的重点是在直角坐标系中,探究点或图形的平移引起的点坐标变化的规律。

  对应点的坐标变化规律的获得过程,教科书中仅用了点平移、图形平移两个栏目,来呈现平移引起点坐标变化规律的。规律不能让学生死记硬背,而是让学生通过观察、分析、归纳的途径来掌握规律。因此本节课的难点设定为在坐标系中结合图形的平移变换理解和归纳对应点的坐标变化规律并进行应用。

  二、教学目标

  根据学生的认知水平和本节课的教学内容及蕴含的数学思想我制订了以下三个层面的目标:

  1、知识目标

  掌握点的坐标变化与点的左右、上下平移之间的关系;掌握图形各个点的坐标变化与图形的平移之间的关系并解决与平移有关的问题。

  2、经历探索点坐标变化与点平移的关系,图形各个点坐标变化与图形平移关系的过程,让学生学会独立自主地、有条理地思考、分析,发展学生的形象思维能力和归纳总结意识。

  3、培养学生主动探索,敢于实践的创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研究数学问题的乐趣,从而增强学生学习数学的兴趣,树立学好数学的信心。

  三、设计思路

  本节课,我设计了一个以FLASH为操作平台的课件,来实现教学目标,完成教学任务。我之所以选择FLASH来编写这个课件主要考虑了两点原因:

  1、就课的内容来说,这节课主要学习点或图形在坐标系内平移引起的坐标变化的规律。如果单纯的让学生观察静止的图形,很难激起学生主动探索的热情;再有部分学生没有动态几何的想象能力,因此我选择了动画功能强大的FLASH来制作课件。FLASH能逼真的模拟出图形平移的全过程,从而把复杂的.东西变简单,抽象的东西变具体,最大程度的提高了教学效果。

  2、就课堂教学效果来说,使用课件演示就比传统的教学方式能吸引学生。但选择FLASH动画就比一般的Powerpiont更有吸引力。通过Flash课件演示,学生能直观的看到图形平移的全过程,培养了学生观察力、想象力,不断激活学生思维,让学生逐层参与知识的构建过程,克服了教学的难点。

  四、教学过程

  1、回顾复习、导入新课

  展示雪人平移,连接对应点连线这样一个动态过程,来复习平移概念及性质。从学生已有的数学知识出发,回顾平移的相关知识,为新知识、新课题的学习奠定了基础,从而也很自然地过渡到新课题的学习中去。

  2、探究归纳、学习新知

  A、移与坐标变化的关系

  设计了观察探究、实践探究、分析归纳、知识升华四个环节来完成点平移的探究过程,引导学生自主的归纳出点平移与坐标变化的规律。

  观察探究

  设计了一个动画,将吉普车从点A(-2,-3)向右平移5个单位长度,它的坐标是。把吉普车从点A向上平移4个单位长度呢?这个问题的出现可以让学生通过观察初步感知其变化关系,然后带着自己的初步观点来进行下一个环节的教学。

  实践探究学生动手在坐标纸

  上将点A(-2,-3)向左平移两个单位长度,它的坐标是什么?

  若将点A(-2,-3)向下平移3个单位长度呢?

  通过亲自画图操作、思考的过程,学生可以验证刚才观察后的推断。通过以上两个环节,大多数学生都会发现点平移的规律,进而归纳出点平移与坐标的变化规律。

  分析归纳

  学生通过观察、操作、合作交流等实践活动,经历了从特殊到一般、从具体到抽象的探索过程,最终归纳总结点平移与坐标变化的规律就相对简单了。

  在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));

  将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

  知识升华

  设计了一个思考题:将点A(3,4)移动到点A’(-3,-4)?(尽可能多的利用平移知识找到答案)

  这个问题的出现就是为了使学生发现斜向平移可以分解为水平平移和垂直平移来完成。将点平移的知识提高了一个层次,也体现了知识由浅到深,由简到繁的过程,能拓宽学生的思路,同时也为图形的斜向平移埋下伏笔。

  将这个问题设计成动画形式,能让学生真切的感受点平移的全部过程,形象生动。同时也能帮动态想象能力较差的同学构建动态平移的画面。

  (此问题先让学生分组讨论,尽可能多的寻找路径,小组代表发言之后再演示动画)

  ①先向左平移6个单位长度,再向下平移8个单位长度;

  ②先向下平移8个单位长度,再向左平移5个单位长度。

  总结:点的斜向平移,可通过点的水平平移和垂直平移来完成。

  B、探索图形上的点坐标变化与图形平移间的关系

  学生已经掌握了点平移与坐标之间的变化关系,然后再学习图形平移与图形个点之间坐标变化的关系就相对简单多了。这部分的学习也是通过四个环节来实现的:观察探究、实践探究、分析归纳、知识升华。

  观察探究

  如图,三角形ABC三个顶点坐标分别为A(4,3)B(3,1)C(1,2)

  观察填空,将三角形的三个顶点的横坐标都减去6,纵坐标不变,得到的A’

  B’C’。

  观察猜想:三角形A’B’C’与三角形ABC的大小、形状相同吗?

  它们从位置上有什么关系?或者说成(通过平移能否从三角形ABC得到三角形A’B’C’?又是向什么方向平移了?平移了几个单位长度?)

  这里设计了一个动画,根据找到了A’B’C’的坐标,描点,然后连接这几个点组成一个封闭图形,三角形A’B’C’,然后将三角形ABC平移后能和A’B’C’重合,这样就能发现新图形与原图形形状、大小相等,

  总结归纳

  采用小组合作分析,逐步精炼语言的方式来完成,可以让学生的语言较为精确。

  教学反思本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的。主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系,图形各个点的坐标变化与图形平移的关系,并结合多媒体课件演示,体验坐标平面上点与有序数对一一对应的关系。主要有三点:

  1、内容处理上,注意了新旧知识间的联系又注意了新旧知识间的区别。顺利的完成了知识的迁移。

  2、课堂教学中,为学生提供了充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛。

  3、注重学法指导,本节课通过学生一系列的探究活动完成学习过程,让学生经历观察、探索、操作、分析、归纳总结的一个过程,经历知识产生、运用、升华的过程,自主的完成本节课的学习。

【七年级数学说课稿】相关文章:

七年级数学说课稿05-15

七年级数学说课稿(精选)07-16

七年级数学说课稿(热)05-15

小学数学说课稿 小学数学优质说课稿06-25

七年级数学说课稿经典15篇05-15

七年级数学从算式到方程说课稿06-24

小学数学的说课稿01-09

小学数学的说课稿04-23

初中说课稿数学01-06

数学说课稿11-05