当前位置:育文网>教学文档>说课稿> 高一数学说课稿

高一数学说课稿

时间:2024-07-22 10:16:19 说课稿 我要投稿

高一数学说课稿15篇[优秀]

  作为一名优秀的教育工作者,往往需要进行说课稿编写工作,借助说课稿我们可以快速提升自己的教学能力。说课稿应该怎么写呢?下面是小编帮大家整理的高一数学说课稿,希望对大家有所帮助。

高一数学说课稿15篇[优秀]

高一数学说课稿1

  说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。

  (2)采用“从特殊到一般”、“从具体到抽象”的方法。

  (3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

  (4)多媒体演示法。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

  (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

  因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的.定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.

  方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

  这样可以充分调动学生自主学习的积极性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

  作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业 :(1)完成P178 A组1、2、3题

  (2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

高一数学说课稿2

  授课时间: 08 年 9 月 12 日

  授课年级、科目、课题: 高一数学 集合的概念

  使用教材: 必修1(人教版)

  说课教师: 刘华

  各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。

  一、教材分析:

  教材的地位和作用:

  集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子.从教材我归纳出本节内容的教学重点和难点。

  (一)教学重点:集合的基本概念和表示方法,集合元素的特征

  (二)教学难点:运用集合的.三种常用表示方法、列举法与描述法,正确表示一些简单的集合

  二、教学目标:

  (一)知识目标:

  (1)使学生初步理解集合的概念,知道常用数集的概念及其记法;

  (2)使学生初步了解“属于”关系的意义;

  (3)使学生初步了解有限集、无限集、空集的意义

  (二)能力目标:

  (1)重视基础知识的教学、基本技能的训练和能力的培养;

  (2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

  (3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;

  (三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情

  操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

  三、学情分析:

  针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。

  四、教法分析:

  为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:

  (1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。

  (2)营造民主的教学氛围,使学生参与教学全过程。

  (3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。

  (4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。

  五、教学过程

  (一)复习导入

  (1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  (2)教材中的章头引言;

  (3)教材中例子(P4)。

  (二)讲解新课

  (1)集合的有关概念

  (2) 常用集合及表示方法

  (3)元素对于集合的隶属关系

  (4)集合中元素的特性

  (三)课堂练习

  1下列各组对象能确定一个集合吗?

  (1)所有很大的实数的集合 (不确定)

  (2)好心的人的集合 (不确定)

  (3){1,2,2,3,4,5} (有重复)

  (4)所有直角三角形的集合 (是 的)

  (5)高一(12)班全体同学的集合(是 的)

  (6)参加2008年奥运会的中国代表团成员的集合(是 的)

  2、教材P5练习1、2

  六:总结

  1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征.

  2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握.

高一数学说课稿3

  我说课的题目是《集合》。

  《集合》是人教版必修1,第一章第一节的内容。

  一.教材分析(首先我们一起来探讨一下教材的地位和内容)

  集合与函数的内容历来是高中数学课程的传统内容,也是后继学习的基础。作为现代数学基础的集合论,它是一个具有独特地位的数学分支。高中数学课程是将集合作为一种语言来学习,它是刻画函数概念的基础知识和必备工具。

  二、教学目标(接下来我们分析一下本节的教学目标,新《课程标准》制定的学习目标是)

  (1)、学习目标

  了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。

  (2)过程与方法

  启发学生发现问题,提出问题,通过学生的合作学习,探索出结论,并能有

  条理的阐述自己的观点;

  (3)、情感态度与价值观

  通过概念的引入,让学生感受从特殊到一般的认知规律;

  激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志;

  三.教学重点与难点(接下来我们来看一下本节的重点和难点是什么)

  重点 :(本节的重点应该是)使学生了解集合的含义与表示,理解集合间的关系和运算,会用集合语言表达数学对象或数学内容)

  难点 :(在本节的学习过程中,学生们可能遇到的难点是)

  (1)(要)区别较多的新概念及相应的新符号;

  (2)(如何)选择恰当的方法来准确表示具体的集合;

  四.教法分析

  1、以学生为中心,重点采用了问题探究和启发式相结合的教学方法.

  2、从实例、到类比、到推广的问题探究,激发学生学习兴趣,培养学

  习能力启发,引导学生得出概念,深化概念.

  3、利用多媒体辅助教学,节省时间,增大信息量,增强直观形象性.

  五.说教学过程(下面我以集合的含义与表示为例谈一谈我的教学设计) (那么整个教学流程分这么几块)

  “集合的含义与表示”的教学流程:

  1问题引入

  上体育课时,体育老师喊:高一**班同学集合!听到口令,咱班全体同学便会从四面八方聚集到体育老师身边,而那些不是咱班的学生便会自动走开。这样一来,体育来说的一声“集合”就把“某些特指的对象集在一起”了。

  数学中的“集合”和体育老师的“集合”是一个概念吗?

  2构建新知(那么构建新知的时候,主要围绕着以下几点展开)

  (1) 集合的含义

  数学中的“集合”和体育老师的集合并不是同一概念。体育老师所说的“集合”是动词,而数学中的集合是名词。同学们在体育老师的集合号令下形成的整体就是数学中集合的涵义。

  师:一般的,某些特定的对象集在一起就成为集合,也简称集,例如”我校篮球队的队员“图书馆里所有的书”。同学们能不能再接着举出些集合的例子呢? (自由发言,教师复述其中正确的举例并板书出来)

  (1)我们班所有女生

  (2)所有偶数

  (3)四大洋

  ······

  (2) 集合与元素的关系

  师:元素与集合的关系有“属于∈”及“不属于?

  如A={2,4,8,16},则4∈A,8∈A,32( )A.(请学生填充)。

  注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??

  元素通常用小写的拉丁字母表示,如a、b、c、p、q??

  2、“∈”的开口方向,不能把a∈A颠倒过来写。

  (3) 集合的表示法

  常用的有列举法和描述法。

  列举法是把集合中的元素一一列举出来的方法。

  描述法是用确定的条件表示某些对象是否属于这个集合的方法。

  常见数集的专用符号

  N:非负整数集(自然数集).

  Q:有理数集

  R:全体实数的集合

  ``````

  3典例精析

  例1, 判断下列对象是否能组成一个集合,并说明理由

  1身材高大的'人

  2所有的一元二次方程

  3所有的数学难题

  4满足的实数所组成的集合

  (在这里我要重点讲的是第四个问题,有的同学会认为x^2<0的实数解不存在,所以这样的集合没有。事实上这样的回答是错误的,因为不存在元素的集合应该叫做空集。

  例2(对于例题2也同学们容易错的题,这里主要是围绕集合中的元素应该具有互异性展开,因为它具有互译性,所以这个三角形一定不是等腰三角形)

  已知集合{a,b,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是()

  A直角三角形B 锐角三角形C钝角三角形D等腰三角形

  例3 课本P3例1 例4 课本P4例2

  例2, 例4主要是围绕着集合的描述方法展开。对于这四道题的设计,我们主要

  是围绕着本节课的重点知识展开。通过对于例题的解析,加深对各个知识点的理解。

  4归纳小结,布置作业

  归纳小结:

  1、集合的概念

  2“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.

  3、常见数集的专用符号.

  设计意图:让学生养成在学习之后,能养成做总结的习惯,有利于新知识的构建。 布置作业:

  一、课本P7,习题1.1 1

  二、1、预习内容,课本P5—P6

高一数学说课稿4

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解“属于”关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯,并通过“自主、合作与探究”实现“一切以学生为中心”的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

  二、说教法和学法

  接下来则是说教法、学法。

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用“生活实例与数学实例”相结合,“师生互动与课堂布白”相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的'流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。

  上述六个环节由浅入深,层层递进. 多层次、多角度地加深对概念的理解. 提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线 的距离等于定长 的所有的点;

  (4)方程 的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而

  集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C?表示,而元素用小

  写的拉丁字母a,b,c?表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的“帅哥”能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?

  集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作a?A

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作 N

  正整数集:记作 N或 N? 整数集:记作 Z

  有理数集:记作 Q 实数集:记作 R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移 变式训练

  1.下列指定的对象,能构成一个集合的是

  ① 很小的数

  ② 不超过30的非负实数

  ③ 直角坐标平面内横坐标与纵坐标相等的点

  ④ π的近似值

  ⑤ 所有无理数

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统.教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题 课本习题1.1—1、2、3。

  2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。 设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集 合

  1.集合的概念 4.范例研究

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示?

  以上,我是从教材、教法和学法、教学过程和板书设计四个方面对本课进行了说明,我的说课到此结束,谢谢各位评委老师,并请各位评委老师指正!

高一数学说课稿5

各位领导、老师、大家好:

  今天,我说课的题目是逻辑联结词.我将从教材分析、教学方法、学法指导、教学过程、教学设计说明五个方面分别进行说明。

  一.教材分析

  1.地位和作用

  本节课的内容是人民教育出版社全日制普通高级中学教科书高中数学第一册(必修)第一章第六节逻辑联结词。从内容上看,本节课程是逻辑的入门知识,而逻辑是研究思维形式及规律的一门基础学科。学习数学需要全面的理解概念,正确的表述、判断和推理,这就离不开对逻辑知识的掌握和应用。从知识上看,逻辑联结词与集合、充分与必要条件两个知识点密不可分。而在日常生活、学习和工作中,基本的逻辑推理能力是认识问题、研究问题不可缺少的工具。而本部分内容,既是逻辑知识的基础,也是学生在初中数学中学习过的简单命题知识的进一步深化和推广。

  2.教学目标

  ⑴知识目标

  了解命题的概念,理解逻辑联结词“或”、“且”、“非”的含义,掌握含有“或”、“且”、“非”的复合命题的构成。

  ⑵能力目标

  经历抽象的逻辑联结词的过程,培养学生观察、抽象推理的思维能力。通过发现式的引导,培养学生发现问题,解决问题的能力。

  ⑶情感目标

  培养学生勇于探索、善于研究的精神,挖掘其智力因素资源,培养其良好的数学品质。

  3.教学重点与难点

  ⑴教学重点

  ①逻辑联结词“或”、“且”、“非”的含义。

  ②复合命题的构成。

  ⑵教学难点

  ①对“或”的含义的理解;

  ②复合命题的含义。

  二.教学方法

  1.对受教育者的分析

  为更好的达到教学效果,必须知已知彼,所以在教学设计之前我对受教育者做了如下的分析:

  ⑴学生的学习过程应该是:具体——抽象——具体,即由感性认识上升到理性认识,形成抽象思维,这是一个归纳过程,然后用归纳的结论去指导具体问题的解决,这是一个演绎的过程,学生应遵循两个程序:循环往复,循序渐进。

  ⑵学生的主动性和积极性是教学效果能否达到的关键,教师要从调动学生的学习主动性和积极性为出发点设计教案,最大限度的激发学生的学习兴趣。

  2.教学手段

  ⑴启发诱导式的教学模式

  启发诱导式教学模式是教师在学生已有的知识经验和思考基础上适当引导,使学生获得新知识。其主要理论依据是现代认知理论和当代信息理论。其程序是“新课引入,展示目标;启发诱导,提高升华;形成能力,反馈回授”。

  ⑵现代化多媒体教学手段

  计算机都有很强大的图形处理功能和动画处理功能,可以给学生包括声音、图片、视频等几乎你能想象到的所有媒体。现代信息传播理论已证明:视听等多媒体感官刺激大脑,会唤起表象,激起强烈的求知欲和浓厚的学习兴趣,使教学目标得以顺利完成,并收到良好的学习效果。

  ⑶为了突出重点,突破难点,在教学设计上我结合对受教育者的分析,采用了以下措施:

  ①结合本节内容的特征,设计出一个具有代表性的引例,激发学生逻辑思维的潜意识,使学生产生求知欲望。

  ②通过简单命题与复合命题的对比,明确它们的区别和联系,加深对复合命题构成的理解,抓住其本质特点。

  ③分析学生的知识结构,并从具体情况出发,设计出几组例子,逐步引导学生观察,探讨归纳出逻辑联结词的含义,从中体会逻辑的思想。并联系实际,对逻辑联结词中的“或”与日常生活中的“或”的区别做重点讲解。

  ④从学生的认知习惯出发,在内容安排上,把逻辑联结词“或”、“且”、“非”的讲授顺序改为“非”、“且”、“或”。

  三.学法指导

  教学矛盾的主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习,学会怎样分析问题。引导学生自己发现问题,分析问题,并解决问题。这样研究性的学习方法,可以让学生真正的成为教学的主体,也只有这样才能使学生学有所思,思有所得,学生也会慢慢感受到数学的美,会产生一种成就感,从而提高学生的兴趣。这也适应素质教育下培养创新型人才的需要。

  四.教学过程

  1.引入新课

  一堂课好的开始,能够吸引学生的注意力,并能调动学生的学习积极性,所以一开始我就设置了一个问题情境:张三、李四和王二三位同学中的一位做了一件好事,但是做好事的同学不想让别人知道,事后老师想知道是谁做的,张三说是李四做的,李四说不是他做的,王二说也不是他做的。已知只有一个人说实话,如果你是那位老师,你可以判断是谁做的吗?

  由于学生已经具有一些简单的逻辑常识,所以解决问题并不难,由此来引出本节课的内容。

  2.新课讲授

  ㈠引入概念

  设问:学生对命题的理解在初中已略有了解,于是先让学生观察这样几个语句:

  ⑴5是10的.约数;

  ⑵矩形的对角线互相平分;

  ⑶四边相等的四边形是正方形;

  ⑷这是一棵大树.

  启发诱导学生挖掘出以上几个语句的特点,并归纳出命题定义:

  命题:可以判断真假的语句;

  真命题:正确的语句;

  假命题:错误的语句。

  ㈡巩固练习

  例1:判断下列语句是不是命题:

  ⑴3是12的约数;

  ⑵;

  ⑶不等式的解集是;

  ⑷不等式的解集是;

  ⑸不是方程的根;

  ⑹。

  说明:

  其一:让学生通过练习掌握判断命题及其真假的方法。

  其二:由例1引导学生归纳总结出命题的两要素。

  ①要判断;②要知其真假。

  其三:通过⑶、⑷、⑸三个复合命题既复习了集合的知识,又为复合命题的讲述作了铺垫。

  ㈢启发诱导

  例2:判断下列语句是不是命题。若是,请判断真假。

  ⑴

  ⑵空集的补集是全集;

  ⑶雪下得真大;

  ⑷平行线不相交;

  ⑸0既不是奇数,也不是偶数;

  ⑹0可以被2或5整除。

  略解:⑷、命题:平行线相交;则它是“非”形式。

  ⑸、命题:0不是奇数;命题:0不是偶数;则它是“且”的形式。

  ⑹、命题:0可以被2整除;命题:0可以被5整除;则它是“或”的形式。

  说明:

  其一:让学生练习并巩固所学的知识,例2中包含真命题、假命题和不是命题的语句,总体上对学生进行由浅入深的引导。

  其二:让学生在无形中接触复合命题,自然而然的引入复合命题。引导学生观察探索⑷、⑸、⑹三个命题——含有“非”(不)、“且”、“或”(在例题的安排上把学生容易接受的“非”放在前面,而把学生们不容易接受的“或”安排在最后);进而给出逻辑连接词“或”、“且”、“非”的概念,引出复合命题的定义。

  其三:通过例2介绍命题的拉丁字母表示法,并由⑷⑸⑹给出复合命题的三种基本形式:“或”、“且”、“非”,并对这三个语句的形式加以判断。

  ㈣突出重点

  例3:判断下列语句是“或”、“且”、“非”中的哪种形式。

  ⑴0不是负数;“非”

  ⑵2不是质数;“非”

  ⑶菱形的对角线相互垂直且平分;“且”

  ⑷24既是8的倍数,也是16的倍数;“且”

  ⑸李强是篮球运动员或跳高运动员;“或”

  ⑹3大于或等于2。“或”

  说明

  让学生巩固了对逻辑联结词“或”、“且”、“非”的含义的理解和掌握了复合命题的构成。

  ㈤突破难点

  例4:填空题

  ⑴若,则xxxx不xxxx属于;

  ⑵若,则xxxx且xxxx;

  ⑶若,则xxxx或xxxx。

  说明

  其一:通过学生们的填空及所填的“词”加深对逻辑联结词的理解。

  其二:通过和集合的“交”、“并”、“补”的对比,了解它们的关系,以正确理解逻辑联结词“或”、“且”、“非”,并为下节课判断复合题的真假做好铺垫。

  其三:强调对逻辑联结词“或”的理解:

  ⑴数学中的逻辑联结词“或”与生活日常生活中的“或”的意义不同:日常生活用语中带有“不可兼有”(即不能同时具备)的意思,如:你去或我去.这句话不含你我都去;而数学中的这一逻辑联结词含有“同时兼有”的意思.(请同学们结合集合的定义说一说这里的“或”怎么理解?)

  ⑵“或”与集合的“并”密切相关:

  ①集合的并集是用“或”来定义的:

  ②它们的外延相似:“或”的含义有三种情形:

  ㈠只有成立;㈡只有成立;㈢和同时成立。

  3.实际应用探索举例

  日常生活中许多电器有控制功能,它与我们今天所学的“或”、“且”、“非”有一定的联系。例如:洗衣机中就有一些元件,使洗衣机在甩干时,如果“到达预定时间”或“机盖被打开”就会停机,即通过一些元件使当两个条件至少有一个满足时就会停机。相应的电路叫或门电路。又如:电子保险门在“钥匙插入”与“密码正确”两个条件都满足时,才会开启。相应的电路叫做与门电路。再如电键开则灯亮,电键关则灯灭,相应的电路叫做非门电路。

  思考题:干电池一节,小灯泡一个,电键两个,导线若干.请同学们设计“或门电路”,“与门电路”,“非门电路”各一个。并在草稿纸上作出电路图。

  4.小结

  这节课我们首先学习了命题、真命题、假命题的概念,进而学习了如何判断一个语句是不是命题的方法,并总结命题的两要素一是要判断、二是要知其真假。

  接下来我们学习了逻辑联结词和复合命题。其中复合命题有“或”、“且”、“非”三种形式。并重点分析了逻辑联结词“或”。

  说明

  引导同学们回忆这节课学了什么,让学生对这节课所学的知识形成一个很清晰的网络,有利于学生们对知识的内化。

  5.课后练习题

  在本节课的最后,我给出两组梯形难度的练习题作为课后练习。这样可以使不同层次的学生都可以在课后通过相应的训练巩固知识,并得到相应的提高。

  第一组

  1:判断下列语句是不是命题;若是,请判断真假。

  ⑴若是偶数(),则都是偶数;

  ⑵方程没有理根;

  ⑶等价于且。

  2:设命题:是等腰三角形;:是直角三角形,请写出其构成的“或”、“且”、“非”形式的合命题。

  3.判断下列命题是不是复合命题;若是,请指出其构成形式及构成它的简单命题.

  ①24既是8的倍数,又是6的倍数;

  ②

  ③不存在角A,使得

  第二组

  写出下列命题的“非”形式

  ⑴:且;⑵:或。

  6.板书设计

  课题:逻辑联结词

  引入内容:

  设  问:⑴⑵⑶⑷

  例2、

  ⑴⑵⑶⑷⑸⑹

  例3、

  ⑴⑵⑶⑷⑸⑹

  例1、

  ⑴⑵⑶⑷⑸⑹

  例4、

  ⑴⑵⑶⑷

  总结:

  练习题:

  第一组第二组

  五、教学设计说明:

  在教学设计时,我结合对受教育者的分析,设身处地从学生的角度着想,将概念设置在具体的情境中,这样我们的教学活动就不在是由抽象到抽象,就能把教材的平铺直叙变得活灵活现。我们的教学语言就会“说到学生的心坎上”。

  本节课的设计主要是以引导为主,让学生自己发现问题、分析问题并解决问题。在程序安排上我讲究各知识点的连贯,不断的由已学的知识来引出未知的知识。这样就此可以使学生对本节课所学的知识形成一个清晰的网络;并能激发学生的学习兴趣和求知欲。

高一数学说课稿6

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:

  ①等差数列的概念。

  ②等差数列的通项公式的`推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情分析

  对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  二、教法分析

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

  通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1-an=d (n≥1)

  同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

高一数学说课稿7

  各位领导和老师,大家好!我说课的内容是苏教版必修1第1章第3节第一课时《交集、并集》,下面我想谈谈我对这节课的教学构想:

  一、教材分析:

  与传统的教材处理不同,本章在学生通过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”。在此基础上,通过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。因此,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学内容。有了集合的语言,可以更清晰的表达我们的思想。所以,集合是整个数学的'基础,在以后的学习中有着极为广泛的应用。

  基于以上的分析制定以下的教学目标

  二、教学目标:

  1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。 能用Venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。

  2、通过对交集、并集概念的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程。

  3、通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。

  三、教学重点、难点:

  针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生通过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。

  四、教法、学法:

  针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,采用“五环节教学法”。同时利用多媒体辅助教学。

  下面我重点说一说教学过程

  六、教学过程:

  第一个环节:问题情境

  通过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛。已知两项都参赛的有6名同学。两项比赛中,这个班共有多少名同学没有参加过比赛?让学生感受到数学与我们的生活息息相关,从而激发学生的学习兴趣。

  学生思考后回答,然后老师加以引导,让学生的回答达到这样三个层次:

  层次一:发现要求没有参加比赛的人数,首先应该算出参加比赛的人数,并且知道参加比赛的人数是12+20-6,而不是12+20,因为有6人既参加排球赛又参加田径赛。

  层次二:老师引导学生利用集合的观点再来研究这个问题。先设利用Venn图来表示集合A,B,C.发现集合A,B的公共部分就是集合C.

  层次三:引导学生发现集合C的元素的构成与集合A,B的元素的关系。学生可以发现集合C中的元素是由既参加排球比赛又参加田径比赛的同学构成的,更进一步集合C的元素是由既属于集合A的元素又属于集合B的元素构成的。

  通过对三个层次的探究和分析让学生体验数学发现和创造的历程。

高一数学说课稿8

  一、教材分析。

  1、教学目标:

  (1)理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

  (2)培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  (3)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  2、教学重点和难点:

  (1)等差数列的概念。

  (2)等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。

  二、教法分析。

  采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、教学程序。

  本节课的教学过程由:(一)复习引入;(二)新课探究;(三)应用例解;(四)反馈练习;(五)归纳小结;(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是cm)分别是21,22,23,24,25。

  2、某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。

  3、某长跑运动员7天里每天的训练量(单位:m)是:7500,8000,8500,9000,9500,10000,10500。

  共同特点:从第2项起,每一项与前一项的差都等于同一个常数。

  (二) 新课探究。

  1、给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  (1)“从第二项起”满足条件;

  (2)公差d一定是由后项减前项所得;

  (3)公差可以是正数、负数,也可以是0。

  2、推导等差数列的通项公式:若等差数列{an }的首项是 ,公差是d, 则据其定义可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……进而归纳出等差数列的通项公式:= +(n—1)d

  此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:– =d;– =d;– =d……– =d。

  将这(n—1)个等式左右两边分别相加,就可以得到 – = (n—1) d即 = +(n—1) d

  当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

  接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n—1)×2 , 即 =2n—1 以此来巩固等差数列通项公式运用

  (三)应用举例。

  这一环节是使学生通过例题和练习,增强对通项公式含义的'理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 :

  (1)求等差数列8,5,2,…的第20项;

  (2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

  第二问实际上是求正整数解的问题,而关键是求出数列的通项公式。

  例2:

  在等差数列{an}中,已知 =10, =31,求首项 与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固。

  例3:

  梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  (四)反馈练习。

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、若数列{ } 是等差数列,若 = k ,(k为常数)试证明:数列{ }是等差数列。

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结 。(由学生总结这节课的收获)

  1、等差数列的概念及数学表达式。

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2、等差数列的通项公式 = +(n—1) d会知三求一

  (六) 布置作业。

  1、必做题:课本P114 习题3。2第2,6 题。

  2、选做题:已知等差数列{ }的首项 = —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  四、板书设计。

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高一数学说课稿9

  各位领导 教师同仁:

  我说课的内容是正切函数的性质和图像。

  教材理解分析

  《1,4.3 正切函数的性质与图像》是人教社A版必修4第一章第4节的'第3小节的内容。是前面系统的学习了正弦与余弦函数的概念,图像及其性质以后滴内容

  学习目标

  1、掌握正切函数的性质及其应用

  2、理解并掌握作正切函数图象的方法;

  3、体会类比、换元、数形结合等思想方法。

  学情分析

  由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。

  根据教材结构和学情我对具体地教学过程和设计作如下说明:

  在学法上大胆采用高效课堂模式,让学生探究,大胆去掉非主线知识内容,内容程序尽量简洁明了,一课一得,便于学生掌握。教学过程共有这样几个方面

  一、复习引入

  (1)画出下列各角的正切线

  (2)复习相关诱导公式

  二、探究新知

  探究一 正切函数的性质

  探究二 正切函数的图像

  三、新知运用

  例1 求函数的定义域、周期和单调区间.

  四、课堂练习

  1、求函数y=tan3x的定义域,值域,单调增区间。

  2、 观察正切曲线,写出满足下列条件x的范围:

  (1) ; (2) ; (3)

  五.小结与课后作业

高一数学说课稿10

各位评委、老师:

  大家好,我说课的内容是人教A版《普通高中课程标准实验教科书A版数学必修一》第二章2.2.2《对数函数及其性质》。

  我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。

  一、教材分析

  本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。

  《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:

  知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。

  过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。

  情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.

  结合教学内容和教学目标,考虑到学生对抽象事物的`理解可能存在困难,制定如下的教学重点、难点:

  重点:对数函数的概念、图象和性质;

  难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;

  二、学情分析

  对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。

  三、教学与学法

  教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。

  老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。

  四.教学过程

  教学过程分为以下环节:

  实例引入、直观感知——总结类比、形成概念——类比探究、分析归纳——知识应用、提升能力——师生交流、归纳小结——作业布置

  (一)实例引入、直观感知

  1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.

  问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数

  问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数

  问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

  设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.

  2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。

  问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)

  问题四:你能类比指数函数得到此类函数的一般式吗?

  设计意图:体现了类比和特殊到一般的数学思想

  (二)总结类比、形成概念

  问题五:你能根据指数函数的定义给出对数函数的定义吗?

  (师生共同归纳出对数函数的定义)

  问题六: 与 中的x,y的相同之处是什么?不同之处是什么?

  设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域

  (三)类比探究、分析归纳

  问题:有了研究指数函数的经历,你会如何研究对数函数的性质?

  设计意图:提示学生进行类比学习

  合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。

  ,

  合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。

  设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。

  教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。

  合作探究3:对照指数函数的性质,总结归纳对数函数的性质.

  (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

  (四)知识应用、提升能力

  例1:求下列函数的定义域

  (1) ( ) (2) ( )

  (该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)

  例2:利用对数函数的性质,比较下列各组数中两个数的大小:

  (1) , (2) ,

  (3) , (4) , ,

  设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法

  思考巩固:已知 ,比较m,n的大小

  设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度

  (五)师生交流、归纳小结

  由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。

  (六)布置作业

  教材P73 练习1,2

  设计意图:练习难度不大,是对本节知识的巩固。

高一数学说课稿11

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:理解对数函数的概念,掌握对数函数的图象及性质。

  难点:由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的`在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  例比较下列各组数中两个值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、巩固练习

  (1)比较大小:

  lg6________lg8;ln1.3________

  (2)比较正数m,n的大小:

  若,则m_____n;若,则m_____n.

  4、总结提炼

  (1)自主探究新知识的方法;

  (2)本节课应用了哪些数学思想。

  5、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7、8

  四、板书设计

  2.2.2对数函数及其性质

  一、概念例题

  二、图象

  三、性质

  四、教学反思

高一数学说课稿12

  一、说教材

  1、教材的地位和作用

  《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。

  2、 教学目标

  (1)知识目标:

  a、通过实例了解集合的含义,理解集合以及有关概念;

  b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。

  (2)能力目标:

  a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;

  b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。

  (3)情感目标:

  a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;

  b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

  3、重点和难点

  重点:集合的概念,元素与集合的关系。

  难点:准确理解集合的概念。

  二、学情分析(说学情)

  对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。

  三、说教法

  针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。

  四、学习指导(说学法)

  教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的'机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。

  五、教学过程

  1、引入新课:

  a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。

  b、介绍集合论的创始者康托尔

  2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。

  3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。

  教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。

  4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。

  5、集合的符号记法,为本节重点做好铺垫。

  6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。

  7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。

  8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。

  9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。

  10、知识的实际应用:

  问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。

  11、课堂小节

  以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。

  六、评价

  教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程尊重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。

  七、教学反思

  1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。

  2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。

高一数学说课稿13

  一、指数函数及其性质教学设计说明

  新课标指出:学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础对教学设计加以说明。

  数学本质:

  探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过分类讨论,通过研究两个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。引导学生探究出指数函数的一般性质,从而对指数函数进行较为系统的研究。

  二、教材的地位和作用:

  本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。是在学生已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习的一个重要的基本初等函数。它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的基础。因此,在教材中占有极其重要的地位,起着承上启下的作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞_、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

  三、教学目标分析:

  根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。本节课的难点是指数函数图像和性质的发现过程。

  为此,特制定以下的教学目标:

  1)知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题.

  2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。

  3)情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题。体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。引导学生发现数学中的对称美、简洁美。善于探索的思维品质。

  教学问题诊断分析:

  学生知识储备:

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。

  学情分析:

  由于我所教学生数学的理解能力、运算能力、思维能力等方面有一部分是较好的,但整体是水平参差不齐。高一这个年龄段的学生思维活跃,求知欲强,能够勇于表现自我,展现自我,愿意合作交流。但在思维习惯上与方法上还有待教师引导。

  可能存在的问题与策略:

  问题1.

  学生能够从具体的问题中抽象出数学的模型但对于指数函数的定义中底数的取值范围和指数函数形式的判断有困难。

  教学策略:

  类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。

  学生对:1)y=-3_2)y=31/_3)y=31+_

  4)y=(-3)_5)y=3-_=(1/3)_

  几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:

  问题2.

  学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的`函数图像的影响,把指数函数的图像画成已经学过的图像的形象。

  教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。

  另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。

  问题3.

  函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。

  教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。这样为指数函数质探究时的分类讨论埋下了伏笔。

  问题4.

  通过两个具体的特殊的指数函数图像,来探究得出指数函数的性质。如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?

  教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。

  问题5.

  指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.

  教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。

  问题6.

  学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?

  教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。表格主要呈现五个方面的性质与特点。

  四、教法分析:

  为充分贯彻新课程理念,使教学过_正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。

  、预期效果分析:

  1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。

  2、简单实例的引入,顺利完成了知识的迁移,从得出指数函数的模型,符合学生认知规律的最近发展区。

  3、而作业中完成指数函数性质的探究报告,弥补课堂时间有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。因此,我认为可以达到预定的教学目标。

高一数学说课稿14

尊敬的各位评委、各位老师:

  大家好!

  我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计。

  一、教材分析

  函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。

  根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

  知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

  过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的因此,本节课的学习难点是函数单调性的概念形成。

  二、教法学法

  为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  三、教学过程

  函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

  (一)创设情境,提出问题

  (问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:

  [教师活动]引导学生观察图象,提出问题:

  问题1:说出气温在哪些时段内是逐步升高的或下降的?

  问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

  [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。

  (二)探究发现建构概念

  [学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。

  [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述。引导学生回答:对于自变量8<10,对应的函数值有1<4。举几个例子表述一下。然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征。

  在学生对于单调增函数的特征有一定直观认识时,进一步提出:

  问题3:对于任意的t1、t2∈[4,16]时,当t1

  [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。

  [教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述。提出:

  问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

  最后完成单调性和单调区间概念的整体表述。

  [设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的`活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。

  (三)自我尝试运用概念

  1.为了理解函数单调性的概念,及时地进行运用是十分必要的.

  [教师活动]问题5:

  (1)你能找出气温图中的单调区间吗?

  (2)你能说出你学过的函数的单调区间吗?请举例说明.

  [学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间。对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。

  [教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集。

  [设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。

  2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?

  [教师活动]问题6:证明在区间(0,+∞)上是单调减函数.

  [学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。

  [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。

  [学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值、作差变形、定号、判断。

  [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

  (四)回顾反思深化概念

  [教师活动]给出一组题:

  1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数?

  2、若定义在R上的单调减函数f(x)满足f(1+a)的取值范围吗?

  [学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。

  [设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。

  [教师活动]作业布置:

  (1)阅读课本P34—35例2

  (2)书面作业:

  必做:教材P431、7、11

  选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?

  探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。

  [设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

  四、教学评价

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。

高一数学说课稿15

  今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

  一、说教材

  1、本节在教材中的地位和作用:

  本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

  2. 教学目标确定:

  (1)能力训练要求

  ①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

  ②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

  (2)德育渗透目标

  ①培养学生善于通过观察分析实物形状到归纳其性质的能力。

  ②提高学生对事物的感性认识到理性认识的能力。

  ③培养学生“理论源于实践,用于实践”的观点。

  3. 教学重点、难点确定:

  重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

  难 点:培养学生善于比较,从比较中发现事物与事物的区别。

  二、说教学方法和手段

  1、教法:

  “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

  在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

  2、教学手段:

  根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

  三、说学法:

  这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

  四、 学程序:

  [复习引入新课]

  1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的`截面是全等的多边形

  (3)过不相邻的两条侧棱的截面是平行四边形

  2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体

  思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

  [讲授新课]

  1、棱锥的基本概念

  (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

  (2).棱锥的表示方法、分类

  2、棱锥的性质

  (1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

  证明:(略)

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

  的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  (2).正棱锥的定义及基本性质:

  正棱锥的定义:①底面是正多边形

  ②顶点在底面的射影是底面的中心

  ①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

  ②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

  棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  (3)正棱锥的各元素间的关系

  下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

  引申:

  ①观察图中三棱锥S-OBM的侧面三角形状有何特点?

  (可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

  ②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

  (课后思考题)

  [例题分析]

  例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

  A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

  (答案:D)

  例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

  解析及图略

  例3.已知正四棱锥的棱长和底面边长均为a,求:

  (1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

  解析及图略

  【课堂练习】

  1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

  解析及图略

  2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

  解析及图略

  【课堂小结】

  一:棱锥的基本概念及表示、分类

  二:棱锥的性质

  1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  2.正棱锥的定义及基本性质

  正棱锥的定义:①底面是正多边形

  ②顶点在底面的射影是底面的中心

  (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

  相等,它们叫做正棱锥的斜高;

  (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  ③正棱锥中各元素间的关系

  【课后作业】

  1:课本P52 习题9.8 : 2、 4

  2:课时训练:训练一

【高一数学说课稿】相关文章:

高一数学说课稿06-07

(精选)高一数学说课稿06-07

高一数学下册说课稿09-21

高一数学说课稿集合(15篇)06-07

高一数学说课稿(集锦15篇)06-07

高一年级数学说课稿12-11

小学数学说课稿 小学数学优质说课稿06-25

高一说课稿范文09-15

高一语文的说课稿12-08

初中说课稿数学01-06