《正弦定理》说课稿
作为一名默默奉献的教育工作者,就有可能用到说课稿,借助说课稿可以更好地组织教学活动。那么什么样的说课稿才是好的呢?以下是小编收集整理的《正弦定理》说课稿,欢迎阅读,希望大家能够喜欢。
《正弦定理》说课稿1
一、教材分析
1.教材地位和作用
在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。 依据教材的上述地位和作用,我确定如下教学目标和重难点
2.教学目标
(1)知识目标:
①引导学生发现正弦定理的内容,探索证明正弦定理的方法;
②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。
(2)能力目标:
①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。
②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。 3.教学的重﹑难点
教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明;
教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段
二、教学方法与手段
1.教学方法
教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。
2.学法指导
学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。
学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。
3.教学手段
利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。
下面我讲解如何运用上述教学方法和手段开展教学过程
三、教学过程设计
教学流程:
引出课题
引出新知
归纳方法
巩固新知
布置作业
四、总结分析:
现代教育心理学的研究认为,有效的'性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”. ㈡引导学生通过同化,顺应掌握新概念。
㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。
我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.
设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。
谢谢!
《正弦定理》说课稿2
正弦定理位于人教版全日制普通高级中学数学第一册(下)第五章第5。9节。正弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具,也是前阶段学习的三角函数知识与平面向量知识在三角形的交汇应用,并为以后学习余弦定理提供了方法上的模式,为进一步运用正、余弦定理解决测量、工业、几何等方面的实际问题提供了理论基础,使学生又进一步了解数学在实际中的应用,激发他们的学习兴趣。因此学好本节课的知识就显的尤为重要。
由于高一学生对初中几何中的三角形研究的较透彻,记忆深刻,针对我校学生的实际情况,学生们对新问题有一定的探求欲望,但对问题的分析能力尚未成熟。我在教学中从学生已有经验出发,提出问题引起学生对结论迫切追求的愿望,把问题作为教学的出发点,将学生置于主动参与的地位,引导他们进行分析研究。本节课又是在学习了平面向量数量积的基础上来对定理加以证明的,所以重要的是用向量来推导定理的证明方法。
根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下
教学目标:
知识与技能目标:理解用向量的方法推导正弦定理的过程,掌握正弦定理,初步运用正弦定理解决两类基本的解三角形问题。
过程与方法目标:通过对定理的探究,培养学生合情推理发现数学规律的.思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会数形结合的思想方法。
情感、态度与价值观目标:通过利用向量证明正弦定理了解向量的工具性,体会知识的内在联系,体会事物之间相互联系与辨证统一。
由于正弦定理的证明有很多种方法,本教材是以向量的方法进行了证明,这主要是由于利用向量的数量积,可以把三角形的边长和内角的三角函数联系起来,从而把几何问题转化为代数运算;这样处理不但能对知识进行综合运用,而且还涉及到数形结合、分类讨论等多种数学思想,有利于培养学生的数学思维,因此确立
教学重点:正弦定理的证明极其应用。
教学难点:定理的探究和向量知识在证明正弦定理时的应用。
现行中学教材主要是演绎推理的体系,对定理往往直接给出,而不揭示如何猜想到这个定理,为什么要这样证明,是如何想到这个思路的。这不符合学生的认知规律,本节课恰好是促进学生探索能力提高的好机会。因此我在处理过程中力求达到解决如下问题:如何猜测出定理,如何将向量的数量积和定理建立联系,如何想到构造垂直向量。因此我打算充分利用学生已有的知识和经验,让学生自主探究,在探究的过程中努力把知识与技能、过程与方法、情感态度、价值观有机的结合起来。基于这个想法,这节课我按照以下六个环节进行教学。
1、创设情境,导入新课。
2、自主探索,合理猜想。
3、深入剖析,证明猜想。
4、深化研究,归纳总结。
5、定理应用,巩固新知。
6、归纳总结,布置作业。
一、创设情境,导入新课:
首先,我创设一个问题情境,要想解决问题需要采用割补的方法,需要将一般的三角形先分割成直角三角形后利用直角三角形的边角关系来解决问题,这样处理问题较繁琐,自然引入问题,那对于一般三角形是不是也有某些边角关系呢?学生的学习兴趣被调动起来,该怎样寻找这个关系哪?自然联想到在一般三角形如果成立,那直角角形就一定成立,可不可以由直角三角形开始探索定理。激发学生的思维兴趣,使学生从心理上感受到研究直角三角形的重要性,引发其思考,不是强行要他们接受,培养他们由实际问题抽象出数学问题并加以解决的能力,并渗透从特殊到一般的数学思想,并恰当地引出第二个环节。
二、自主探索,合理猜想:
在本环节中设计了如下几个问题
问题1:在直角三角形中研究边角关系都有那些结论?
问题2:对于,如何用其他的边角来表示斜边?
问题3:那么呢?
问题4:你能得到什么结论?
这几个问题的设计是让学生自主探索,通过提问引发学生合理猜想,启发引导学生从三角函数定义出发,独立发现直角三角形中的边角关系,并猜测定理。
为了说明结论在一般三角形中成立,在这里引入了一个几何画板的小程序,使学生能够清楚的看到,无论是边角怎样变化,都成立,引出本节课的内容。这样,由特殊到一般,由感性到理性,让学生感受、理解知识的产生和发展过程,培养学生探索数学规律的能力。
三、深入剖析,证明猜想:
这部分是本节的难点,也是重点。在这个环节中由于直角三角形已验证,因此引导学生以锐角三角形为例加以证明。由于学生很容易出现初中几何证明方法,但为了突出向量的工具性教师说明:初中平面几何知识可以证明定理,课下可以自己探索,在前面学习向量时曾强调向量的工具性,那今天这个定理能否用向量来证明哪?这样就突出本节课的重点。但学生对使用向量法证明数学问题较生疏,很难找到证明的切入点。所以我设计了以下几个问题。
问题1:要证,可先证(1)我们需要构造一个等式,那由三角形如何建立向量的等量关系呢?
设计这个问题是首先将问题分解,使学生头脑清楚,又因为所要证明的正弦定理是等式,所以从已知等式入手来探讨。
问题2:我们的目标是什么?
问题3:请同学们回顾一下,你曾学过能将线段与某个角的三角函数联系在一起的数学关系式吗?
设计这两个问题使学生明确为什么要能想到构造一个向量和等式进行数量积证明。
问题4:要证的有两边两角,而现在是有三边没角,则应引入怎样的一个角与两边向量的进行数量积运算后使得c边消去?
这样设计学生很自然的想到要使C边不存在,就必须做一个向量,使c边和它垂直,从而利用垂直向量点积为零,消去c边。学生自己思考后会过A做与AB垂直的向量。
问题5:是否一定过A点?
问题6:向量的方向确定了,长度如何确定?任意长度都可以吗?请同学们自己动手试一试
这样设计激发了学生们的学习兴趣,他们通过自己动手探索,亲自实践,充分理解向量的平移的意义,两个向量的数量积和夹角,并理解定理证明。学生在探究中可能会在n与CB的夹角出错,有的会认为是90—B或180—C,此时教师针对学生对向量夹角的问题进行点拨,从而证明。学生们通过运算发现n任意长度都可以,为计算简便所以书上取单位向量j,这样学生就会理解为什么要取单位向量j。
问题7:我们(1)式所得到的结果还不是我们研究目标的全部,还需要证明(2)或(3),我们以(2)为例来证明。
有前面的证明过程学生们很容易就证明这个结论,这样设计是让学生自己动手体会证明思路,并强化证明的完整性。
问题8:正弦定理在直角三角形和锐角三角形都已成立,那在钝角三角形中是否成立呢?,以角A为钝角为例来证明。
这样设计使同学们产生强烈的兴趣,积极地进行研究。在推导1式时教师及时提问:与锐角时有何不同?学生发现与AB的夹角为A—90,其余两角相同。
问题9:能否将锐角和钝角两种不同的情况统一起来?
这样充分激发了学生的求知欲,使他们的学生兴趣被调动起来,自然就发现将角统一A—90即可。在进行数量积运算时,不影响结果,只需将角统一成即可
教师恰当总结:夹角可以用绝对值来统一,不分开讨论也可以。
同学们经过努力,发现并证明了正弦定理对任意三角形都成立,真是很了不起。通过前面的分析同学们对正弦定理发现过程有了一
个更深层次的认识,哪位同学能归纳出正弦定理?学生基本上能
归纳出三角形的各边和它所对角的正弦值的比相等。
这一比值恰好等于直角三角形的斜边也就是等于它的外接圆的
直径。对于任意三角形比值也等于它的外接圆直径。请同学们课下
探讨原因所在。
四、深化研究,归纳总结:
教师在本环节设计问题:通过前面的分析同学们对正弦定理发现过程有了一个更深层次的认识,哪位同学能归纳出正弦定理?对这个定理你有哪些认识?正弦定理可用来解决哪些问题?学生对定理剖析有利于加深理解,灵活运用,明确为利用定理解决问题方向,做好深入分析。
五、定理应用,巩固新知:
这个环节设计了由易到难的例题及练习,形成梯度,进一步强化定理,灵活运用。增强解决实际问题的能力。尤其是例2和练习均属已知两边和其中一边所对角,在解三角形时需要判定解的情况,这是本节课的难点之一,为了突破这一难点,在此引入几何画板,使学生形象直观地认识在已知两边和其中一边所对角解三角形时产生多解的原因。这样让学生课后继续课内的思考,不仅为学生留了思考的时间和空间,又为学习以后的应用埋下伏笔,起到承前起后的作用。
六、归纳总结,布置作业。
通过教师和学生对课堂内容的小结,深化学生对定理证明及应用的
理解,为进一步学习打下坚实的基础。作业是强化对定理的理解
和应用,弥补课堂上的不足。
《正弦定理》说课稿3
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
二、教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的'推导,并逐步得到深化。
三、学法
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四、教学过程
(一)创设情境(3分钟)
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)猜想—推理—证明(15分钟)
激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)
在三角形中,角与所对的边满足关系
注意:
1、强调将猜想转化为定理,需要严格的理论证明。
2、鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3、提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
(三)总结——应用(3分钟)
1、正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
2、运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(四)讲解例题(8分钟)
1、例1、 在△ABC中,已知A=32°,B=81、8°,a=42、9cm、解三角形、
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2、 例2、 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形、
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中
一边的对角时解三角形的各种情形。完了把时间交给学生。
(五)课堂练习(8分钟)
1、在△ABC中,已知下列条件,解三角形、 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm。
2、 在△ABC中,已知下列条件,解三角形、 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°。
学生板演,老师巡视,及时发现问题,并解答。
(六)小结反思(3分钟)
1、它表述了三角形的边与对角的正弦值的关系。
2、定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
3、会用向量作为数形结合的工具,将几何问题转化为代数问题。
五、教学反思
从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。
《正弦定理》说课稿4
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一 教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二 教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三 学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四 教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的`边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
《正弦定理》说课稿5
尊敬的各位考官:
大家好,我是今天的X号考生,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。因此本节的学习有着极其重要的地位。
二、说学情
合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法
通过正弦定理的推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观
在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点
我认为一节好的`数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦定理。难点:正弦定理的证明。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)导入新课
首先是导入环节,我将采用温故知新的导入方式。
复习初中学习的任意三角形中的边和角存在什么样的关系。在学生回顾之后,再提问:能否得到这个边、角关系准确量化的表示?引出本节课学习的内容——正弦定理。
通过温故知新的导入方式,能为本节课的后续的教学做好铺垫。
(二)讲解新知
接下来是新课讲授环节,我将分为四部分,分别为在直角三角形中推导正弦定理、在锐角三角形中推导正弦定理、在钝角三角形中推导正弦定理以及正弦定理的应用。
素的过程叫做解三角形。
在介绍完正弦定理后,接下来介绍正弦定理的应用。通过提问:我们利用正弦定理可以解决一些怎样的解三角形问题呢?总结:如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边;如果已知三角形的任意两边与其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角。
整节课,本着学生为主体,教师为主导的设计理念,结合教学内容和学生的特点,利用学生已有的知识经验,采用层次性的问题,一步步引导学生思考交流、发现知识。并且在整个过程中,讲授法、引导法、合作探究等多种教学方法的使用,不但让学生学会知识,也培养学生的学习能力。通过这样的设计,提升学生学习数学的信心,提高学习数学的兴趣。
(三)课堂练习
《正弦定理》说课稿6
尊敬的各位专家、评委:
大家好!
我是**县**中学数学教师fwsi,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。
一、教材分析
"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验 "观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立"数学与我有关,数学是有用的,我要用数学,我能用数学"的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用"问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的`距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)
放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。
问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)
教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。
通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。
(四)强化理解,简单应用
下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。
让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。
我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:
问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。
(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)
充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。
强化练习
让全体同学限时完成教材4页练习第一题,找两位同学上黑板。
问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。
例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1.1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。
(七)板书设计:(略)
《正弦定理》说课稿7
一、说教材
正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题:
(1)已知两角和一边,解三角形;
(2)已知两边和其中一边的对角,解三角形。
二、说学情
本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。
三、说教学目标
【知识与技能目标】
能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。
【过程与方法目标】
通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。
【情感态度价值观目标】
通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。
四、教学重难点
【重点】
正弦定理及其推导。
【难点】
正弦定理的推导与正弦定理的运用。
五、说教学方法
运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。
新课引入——提出问题,激发学生的求知欲。掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。
例题处理——始终由问题出发,层层设疑,让他们在探索中得到知识。巩固练习,深化对正弦定理的理解。
六、说教学过程
(一)导入新课
我采用的是设疑导入,进行口头提问:
(1)在我国古代就有嫦娥奔月的神话故事,明月高悬,我们仰望星空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?
(2)设A,B两点在河的两岸,只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?
设计意图:通过生活中的知识引入,激发学生学习需要和学习期待,以问题引起学生学习热情和探索新知的欲望。让学生积极主动的参与到课堂里面来,更好的调动学习氛围。
(二)新课教学
1.复习旧知
带动学生回忆以前学过的知识,并设置如下问题引导学生思考,减少学生对新知识的陌生感。
教师提问:(1)请同学们回忆一下,直角三角形中的各个角的正弦是怎样表示的?这三个式子可以用同一个量联系起来吗?
(2)在一般三角形中,该式是否也成立呢?
这样的设置是层层递进,符合学生的认知特点,由易到难,从表象到实质的规律,并且为后面的原因的探究奠定了基础。
2.定理的推导
定理的.推导是数学学习必不可少的一种能力,因此进行了如下推导过程。教师通过提示给出锐角三角形、钝角三角形图形设置一系列层层递进的问题,用问题牵引着学生去探究。并且将学生分成小组去讨论该如何推导证明该定理。
教师设问如下:
①当△ABC是锐角三角形时,结论是否还成立呢?
②在直角三角形中我们找的中间变量是直角三角形的斜边,那么,此时我们应该找一个什么样的中间变量呢?
③什么量可以与三角形的边与正弦值联系起来呢?
在得出结果之后接着设问:当△ABC是钝角三角形时,结论是否还成立呢?通过这样一个问题,不仅让学生知道数学问题需要分类讨论所有可能出现的情况,更能真正培养学生分析问题的能力与知识迁移能力,将在锐角三角形中的证明方法运用到钝角三角形中来。
学生小组讨论,小组代表发表自己的组内的意见,得出结论。
最后师生共同归纳定理的数学语言与文字语言。
《正弦定理》说课稿8
教材地位与作用:
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。
学情分析:
作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)
教学目标分析:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
教法学法分析:
教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
教学过程
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的`一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81。8°,a=42。9cm。解三角形。
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2。在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1、在△ABC中,已知下列条件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2、在△ABC中,已知下列条件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
(九)作业布置
【《正弦定理》说课稿】相关文章:
《正弦定理》说课稿12-29
正弦定理说课稿01-04
正弦定理说课稿7篇03-09
勾股定理的说课稿,勾股定理说课稿范文05-06
《勾股定理的逆定理》说课稿11-13
勾股定理的逆定理说课稿05-15
《勾股定理》说课稿06-20
《勾股定理》说课稿12-16
高中数学正弦定理教案范文通用08-25