当前位置:育文网>教学文档>说课稿> 数学说课稿

数学说课稿

时间:2021-12-31 10:46:31 说课稿 我要投稿

【精选】数学说课稿集锦9篇

  作为一名教职工,总不可避免地需要编写说课稿,借助说课稿可以让教学工作更科学化。那么优秀的说课稿是什么样的呢?下面是小编收集整理的数学说课稿9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

【精选】数学说课稿集锦9篇

数学说课稿 篇1

  教材分析:

  这一节的内容包括8,9的认识,有关8,9的加减法 以及8,9加减法的应用三部分,共5课时。

  "用数学"是第三课时,其内容分为三部分:一是通过同一情境反映两个不同的数学问题,让学生初步感受数学与生活的联系;二是让学生学会看已知数量和问号之间的关系找到合适的计算方法列式并计算;三。让学生能看图提出简单数学问题,并解决问题。内容对刚入学不久的儿童来说,既有现实性,趣味性,又有一定的挑战性,另外,咯市还通过结合"用数学"的教学过程来对学生进行热爱自然,保护动物的教育

  设计理念和思路:

  本节课的教学设计力图体现"尊重学生,注重发展"的教学理念。它注重培养和发展学生的思维能力,创设符合其水平的思维情景和条金,使学生思维活跃,兴趣盎然。

  本节的"用数学"是让学生能寻找出解决问题的方法并结算出结果。在教学中还应让学生寻找问号的数量时侧重通过计算的出,而不是去数未知数的数量,所以本节的设计意图是在指导学生找出求"一共有几个蘑菇"用加法解决,而求"剩下有几只小象休息"用减法解决。让学生初步知道求整体,用加法,求部分用减法,再通过加减法两个题目的对比,引导学生总结出口诀:求总数,用加法,部分相加是答案;求部分,用减法。总数减另部分是答案。再让学生运用这个口诀,看图提数学问题,层层递进,让学生逐步理解接受。

  针对以上的教学设想,却了本节课的教学目标:

  1 让学生进一步掌握加,减法的意义,和10以内的加减法的计算方法。

  2 培养和提高学生用所学知识解决实际问题的能力。

  3 能根据已知量和问号之间的关系,选择合适的计算方法列式计算。

  4 能根据图画提出至少三个数学问题,并解决问题。

  教学程序:

  依据这节课的教材知识结构及小学生认知规律和发展水平,为优化教学过程,实现"尊重学生,注重发展"的课堂教学要求,这节课的程序安排为:

  一、创设情境,引新设疑

  1(播放录音)

  (出示电脑画面,有声音出:嗨,大家好,我是你们的新朋友哈利,小朋友们,今天我要带你们去快乐的森林玩一玩!,

  提问:① 你们知道哈利要带我们去哪里玩吗? (快乐的森林)

  老师板书题目:快乐的森林

  ② 你见过的大森林是什么样子的?———————(有美丽的'树木,可爱的小动物……)

  老师教育学生要爱护大自然,爱护环境,爱护小动物

  二、合作探究,体验发现

  1,引导学生体验加法的含义

  电脑出示动态蘑菇园,导入:哈利首先要带我们去快乐蘑菇园听小蘑菇们唱歌

  问题 ①:通过观察,你看到现在在唱歌的是几个蘑菇呢?

  (通过观察,现在有6朵蘑菇在唱歌)

  师: 你再听听,(有声音出:真好听,真好听,我们也想来一起唱。———————进入两朵小蘑菇)

  问题 ②:谁来帮哈利算一算:现在一共有几朵蘑菇在唱歌了呢?并说说你是怎么想的?

  ①交流算法:6+2=8,一共有8朵蘑菇。把左边的6朵与右边的2朵加起来就是8朵

  ②引导理解:列式2+6=8对吗?

  (求一共有多少蘑菇就是把这里的蘑菇加起来就得出结果了,可以是左边加右边,也可以是右边加左边,所以2+6= 8 6+2=8都对)

  小节总结与评价;

  小朋友们这么聪明又这么乐于助人,哈利为了感谢你们对他的帮助,特意邀请你们去看看森林里的节目表演—小象跳舞

  2,引导学生体验减法的含义

  (电脑出示的一共有9头象的字样。再3头小鹿跳舞的画面和音乐。再出示问题:有几头小象没有跳舞?

  ①引导观察,组织讨论

  教师启发:引导学生弄清问题是:

  有9只小鹿,3只小鹿在跳舞,不跳舞的小鹿有几只?

  ② 引导学生列式解决问题:

  因为一共有9只小鹿,3只跳舞,求不跳舞的小鹿就是用总共的9只小鹿减去跳舞的3只小鹿列式为:9—3=6

  3、引导学生进行比较分析,再总结方法

  (电脑出示蘑菇和小象图的比较图)

  ①提问:为什么求小蘑菇的题用加法解决,而求小象的题用减法解决

  ②引导学生明白小蘑菇的题目是求整体的数,即总数,求总数就用加法。小象的题目是求其中的一部分。求部分就用减法

  ③老师总结口诀:

  求总数,用加法,部分相加是答案

  求部分。用减法,总数减另部分是答案

  三、巩固练习,加深理解

  ① 出示课件一:(一共有8只小鸭子,水里面有3只,求在岸上的有几只?)

  让学生观察,把题意说给你的同桌听听,再把算式填写完整

  8-3=5

  ②出示课件二;(左边有7只小狗,右边有2只小狗,求一共有几只小狗?)

  2+7=9

  ③引导汇报,结合学生回答,电脑演示,进行订正

  四、唱歌,休息

  五、联系生活、整体感知、加深理解

  (出示小鸟图:原来有5只小鸟,后来飞来了4只,)

  引导学生提问:① 原来有5只小鸟,后来飞来了4只,现在一共是多少只?

  5+4=9 4+5=9

  ②有一些小鸟在树上,后来又飞来了4只,现在一共是9只,求原来有几只?

  9-4=5

  ③现在一共有9只小鸟,原来有5只小鸟,求后来飞来了几只?

  9-5=4

  ④原来的小鸟比后来飞来的小鸟多几只?

  5-4=1

  ⑤后来飞来的小鸟比原来的小鸟少几只?

  5-4=1

  六、活动练习,巩固旧知

  (用数学)说课稿,标签:一年级数学说课稿,小学数学说课稿,

  发给20位小朋友每人一张卡片,每张卡片上都有一道数学题,让学生把得数是“8”的投入到“8”号信箱中,把得数是“9”的投入到“9”号信箱中,还有一些小朋友的卡片得数不是8也不是9,便找不到信箱,就请他们讲讲,自己没有把信送出去的原因。

  七、总结收获,渗透联系

  ①通过这节课你学会了什么?

  ②回顾并记忆口诀:

  求总数,用加法,部分相加是答案

  求部分,用减法,总数减另部分是答案

数学说课稿 篇2

  一、教材分析

  本探究活动是继等腰三角形性质、判定之后探索能分割成两个等腰三角形的条件的内容。学习等腰三角形,离不开线段的相等和角相等,《分割等腰三角形》将加深同学们对等腰三角形地认识,是等腰三角形内容的延续和拓展。同时,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力

  二、学生起点分析

  七年级下学期的学生,从年龄特点看:他们好奇心强,思维活跃,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等;从技能水平上看:他们已经初步具有自主探索能力、合作交流能力。

  三、教学目标及重难点

  1、经历可以分割成两个等腰三角形的条件的探索过程,培养探索精神和合情推理能力;

  2、在活动中,体会知识的运用和数学思考的方法;

  3、通过探索条件的'实践过程,体会数学推理的乐趣,增强合作交流意识。

  [教学重点]:可以分割成两个等腰三角形的条件的探索过程。

  [教学难点]:作等腰三角分割成两个等腰三角形的图形

  四、教与学的方式

  1、创设情境,激发兴趣。

  2、小组活动,探求新知

  3、梳理概括,形成结构

  4、布置作业拓展延伸

  授人以鱼,不如“授人以渔”整节课中我始终贯彻“自主参与,自主探究,合作交流,自主构建”的教育理念,采用“探,疑、研,悟”等环节主体探究。让学生在自主,合作,探究的浓厚氛围中掌握知识,形成技能,培养感情。充分体现科学性和人文性的统一。

  五、教学流程设计

  1、创设情境,激发兴趣。

  情景一、学生阅读第120页的《阅读理解》

  这样设计:可以让学生通过阅读理解,初步认识图形分割的意义,培养数学阅读的兴趣和方法。也为后面的如何分割做了复习。

  情景二:在动听的音乐声中,大屏幕上循环播放生活中有关的等腰三角形的图片。图片最后出现等腰三角形花坛。

  教师拿出一个等腰三角形和一把剪刀,提问:谁来帮老师分割这个三角形花坛,使它变成两个三角形以便可以种上不同的花?

  这样设计:一是用他们熟悉或感兴趣的问题情境引出学习主题,激发了学生探究知识的欲望,能够较好地调动学生的学习兴趣。二是进一步体味数学就在我们身边,生活中处处都有数学。

  学生上台演示。这时,教师可以引导学生有两种分割方法:一种是分割线经过顶角顶点;一种是分割线经过底角顶点。

  这样设计:为后面的分类讨论思想打下铺垫

  2、小组活动,探求新知

  第一部分:教师追问:已知花坛的三个角分别为36°、72°、72°,你可以分割成两个等腰三角形吗?如果老师把三角形的三个内角改成20°、20°、140°,你还能分吗?

  合作:小组合作设计两个三角形,使这两个三角形都可以被分割成两个等腰三角形。

  学生展示图片,讲解分割思路。(教师反问:为何不从顶角的顶点分割?)

  归纳小结:当顶角小于底角时,分割线经过底角的顶点,反之,顶角大于底角时,分割线经过顶角的顶点。

  质疑:任何三角形都能被分割成两个等腰三角形吗?

  这样设计:从特殊的三角形出发,加上学生对这个三角形比较熟悉,学生比较好操作,再到一般三角形,从而产生质疑:不是所有的等腰三角形都可以分成两个等腰三角形,起了承上启下的作用。

  第二部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角的关系?

  学生动手画顶角分别是锐角、直角、钝角的等腰三角。

  这样设计:让学生感知等腰三角形的多样性,为分类讨论思想打下铺垫

  设底角为X度,小组合作作图,并求出顶角的度数(X的代数式表示):第一、二组研究分割线经过顶角的顶点的情况,后两组研究分割线经过底角的顶点的情况。

  这样设计:是让学生亲历科学发现的全过程,初步掌握研究性学习的学习方法。

  通过作图求解,学生可以求出:顶角是底角的2倍、3倍、倍。对于倍,教师适当引导。

  第三部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角是几度?学生根据内角和180度,求出角度。

  3、梳理概括,形成结构

  知识:分割成两个等腰三角形的条件和方法;体验:探究活动中的感悟。教师适当引导补充,并对学生的表现适当评价,给予鼓励。

  4、布置作业拓展延伸

  分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。

  选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。

  这样设计:一是想以动手操作开始,再以动手操作结束,使课堂教学浑然一体;二是让学习从课上走到课下,让一种学法得以构建,让一种思想得以延续。

  六、教学反思:

  我努力给学生创造自主探索、合作交流的舞台,无论环节设计,还是作业的安排,都关注了学生的个体差异,注重了学生的数学体验。通过操作、观察、质疑、验证、深化等自主探索活动。丰富知识、提升能力、获得体验。使学生初步具有自主学习之法、终身学习之愿、快乐学习之情。

数学说课稿 篇3

  教材内容

  1.本单元教学的主要内容:

  二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

  2.本单元在教材中的地位和作用:

  二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

  教学目标

  1.知识与技能

  (1)理解二次根式的概念。

  (2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

  (3)掌握 ? = (a≥0,b≥0), = ? ;

  = (a≥0,b>0), = (a≥0,b>0)。

  (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

  2.过程与方法

  (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

  (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

  (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

  (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

  3.情感、态度与价值观

  通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

  教学重点

  1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

  2.二次根式乘除法的规定及其运用。

  3.最简二次根式的概念。

  4.二次根式的加减运算。

  教学难点

  1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

  2.二次根式的乘法、除法的条件限制。

  3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

  教学关键

  1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

  2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

  单元课时划分

  本单元教学时间约需11课时,具体分配如下:

  21.1 二次根式 3课时

  21.2 二次根式的乘法 3课时

  21.3 二次根式的加减 3课时

  教学活动、习题课、小结 2课时

  21.1 二次根式

  第一课时

  教学内容

  二次根式的概念及其运用

  教学目标

  理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

  提出问题,根据问题给出概念,应用概念解决实际问题。

  教学重难点关键

  1.重点:形如 (a≥0)的式子叫做二次根式的概念;

  2.难点与关键:利用" (a≥0)"解决具体问题。

  教学过程

  一、复习引入

  (学生活动)请同学们独立完成下列三个问题:

  问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

  问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

  问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

  老师点评:

  问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。

  问题2:由勾股定理得AB=

  问题3:由方差的概念得S= .

  二、探索新知

  很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式," "称为二次根号。

  (学生活动)议一议:

  1.-1有算术平方根吗?

  2.0的算术平方根是多少?

  3.当a<0, 有意义吗?

  老师点评:(略)

  例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。

  分析:二次根式应满足两个条件:第一,有二次根号" ";第二,被开方数是正数或0.

  解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

  例2.当x是多少时, 在实数范围内有意义?

  分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

  解:由3x-1≥0,得:x≥

  当x≥ 时, 在实数范围内有意义。

  三、巩固练习

  教材P练习1、2、3.

  四、应用拓展

  例3.当x是多少时, + 在实数范围内有意义?

  分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

  解:依题意,得

  由①得:x≥-

  由②得:x≠-1

  当x≥- 且x≠-1时, + 在实数范围内有意义。

  例4(1)已知y= + +5,求 的值。(答案:2)

  (2)若 + =0,求a20xx+b20xx的值。(答案: )

  五、归纳小结(学生活动,老师点评)

  本节课要掌握:

  1.形如 (a≥0)的式子叫做二次根式," "称为二次根号。

  2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

  六、布置作业

  1.教材P8复习巩固1、综合应用5.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第一课时作业设计

  一、选择题 1.下列式子中,是二次根式的是( )

  A.- B. C. D.x

  2.下列式子中,不是二次根式的是( )

  A. B. C. D.

  3.已知一个正方形的面积是5,那么它的边长是( )

  A.5 B. C. D.以上皆不对

  二、填空题

  1.形如________的式子叫做二次根式。

  2.面积为a的正方形的边长为________.

  3.负数________平方根。

  三、综合提高题

  1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

  2.当x是多少时, +x2在实数范围内有意义?

  3.若 + 有意义,则 =_______.

  4.使式子 有意义的未知数x有( )个。

  A.0 B.1 C.2 D.无数

  5.已知a、b为实数,且 +2 =b+4,求a、b的值。

  第一课时作业设计答案:

  一、1.A 2.D 3.B

  二、1. (a≥0) 2. 3.没有

  三、1.设底面边长为x,则0.2x2=1,解答:x= .

  2.依题意得: ,

  ∴当x>- 且x≠0时, +x2在实数范围内没有意义。

  3.

  4.B

  5.a=5,b=-4

  21.1 二次根式(2)

  第二课时

  教学内容

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0)。

  教学目标

  理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。

  通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。

  教学重难点关键

  1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。

  2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。

  教学过程

  一、复习引入

  (学生活动)口答

  1.什么叫二次根式?

  2.当a≥0时, 叫什么?当a<0时, 有意义吗?

  老师点评(略)。

  二、探究新知

  议一议:(学生分组讨论,提问解答)

  (a≥0)是一个什么数呢?

  老师点评:根据学生讨论和上面的练习,我们可以得出

  (a≥0)是一个非负数。

  做一做:根据算术平方根的意义填空:

  ( )2=_______;( )2=_______;( )2=______;( )2=_______;

  ( )2=______;( )2=_______;( )2=_______.

  老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

  同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

  ( )2=a(a≥0)

  例1 计算

  1.( )2 2.(3 )2 3.( )2 4.( )2

  分析:我们可以直接利用( )2=a(a≥0)的结论解题。

  解:( )2 = ,(3 )2 =32?( )2=32?5=45,

  ( )2= ,( )2= .

  三、巩固练习

  计算下列各式的值:

  ( )2 ( )2 ( )2 ( )2 (4 )2

  四、应用拓展

  例2 计算

  1.( )2(x≥0) 2.( )2 3.( )2

  4.( )2

  分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

  (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

  所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。

  解:(1)因为x≥0,所以x+1>0

  ( )2=x+1

  (2)∵a2≥0,∴( )2=a2

  (3)∵a2+2a+1=(a+1)2

  又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

  (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

  又∵(2x-3)2≥0

  ∴4x2-12x+9≥0,∴( )2=4x2-12x+9

  例3在实数范围内分解下列因式:

  (1)x2-3 (2)x4-4 (3) 2x2-3

  分析:(略)

  五、归纳小结

  本节课应掌握:

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0);反之:a=( )2(a≥0)。

  六、布置作业

  1.教材P8 复习巩固2.(1)、(2) P9 7.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第二课时作业设计

  一、选择题

  1.下列各式中 、 、 、 、 、 ,二次根式的个数是( )。

  A.4 B.3 C.2 D.1

  2.数a没有算术平方根,则a的取值范围是( )。

  A.a>0 B.a≥0 C.a<0 D.a=0

  二、填空题

  1.(- )2=________.

  2.已知 有意义,那么是一个_______数。

  三、综合提高题

  1.计算

  (1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

  (5)

  2.把下列非负数写成一个数的平方的形式:

  (1)5 (2)3.4 (3) (4)x(x≥0)

  3.已知 + =0,求xy的值。

  4.在实数范围内分解下列因式:

  (1)x2-2 (2)x4-9 3x2-5

  第二课时作业设计答案:

  一、1.B 2.C

  二、1.3 2.非负数

  三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

  (4)(-3 )2=9× =6 (5)-6

  2.(1)5=( )2 (2)3.4=( )2

  (3) =( )2 (4)x=( )2(x≥0)

  3. xy=34=81

  4.(1)x2-2=(x+ )(x- )

  (2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

  (3)略

  21.1 二次根式(3)

  第三课时

  教学内容

  =a(a≥0)

  教学目标

  理解 =a(a≥0)并利用它进行计算和化简。

  通过具体数据的`解答,探究 =a(a≥0),并利用这个结论解决具体问题。

  教学重难点关键

  1.重点: =a(a≥0)。

  2.难点:探究结论。

  3.关键:讲清a≥0时, =a才成立。

  教学过程

  一、复习引入

  老师口述并板收上两节课的重要内容;

  1.形如 (a≥0)的式子叫做二次根式;

  2. (a≥0)是一个非负数;

  3.( )2=a(a≥0)。

  那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。

  二、探究新知

  (学生活动)填空:

  =_______; =_______; =______;

  =________; =________; =_______.

  (老师点评):根据算术平方根的意义,我们可以得到:

  =2; =0.01; = ; = ; =0; = .

  因此,一般地: =a(a≥0)

  例1 化简

  (1) (2) (3) (4)

  分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,

  (4)(-3)2=32,所以都可运用 =a(a≥0)去化简。

  解:(1) = =3 (2) = =4

  (3) = =5 (4) = =3

  三、巩固练习

  教材P7练习2.

  四、应用拓展

  例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。

  (1)若 =a,则a可以是什么数?

  (2)若 =-a,则a可以是什么数?

  (3) >a,则a可以是什么数?

  分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使"( )2"中的数是正数,因为,当a≤0时, = ,那么-a≥0.

  (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

  解:(1)因为 =a,所以a≥0;

  (2)因为 =-a,所以a≤0;

  (3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

  例3当x>2,化简 - .

  分析:(略)

  五、归纳小结

  本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。

  六、布置作业

  1.教材P8习题21.1 3、4、6、8.

  2.选作课时作业设计。

  3.课后作业:《同步训练》

  第三课时作业设计

  一、选择题

  1. 的值是( )。

  A.0 B. C.4 D.以上都不对

  2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( )。

  A. = ≥- B. > >-

  C. < <- d.-=""> =

  二、填空题

  1.- =________.

  2.若 是一个正整数,则正整数m的最小值是________.

  三、综合提高题

  1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:

  甲的解答为:原式=a+ =a+(1-a)=1;

  乙的解答为:原式=a+ =a+(a-1)=2a-1=17.

  两种解答中,_______的解答是错误的,错误的原因是__________.

  2.若│1995-a│+ =a,求a-19952的值。

  (提示:先由a-20xx≥0,判断1995-a的值是正数还是负数,去掉绝对值)

  3. 若-3≤x≤2时,试化简│x-2│+ + .

  答案:

  一、1.C 2.A

  二、1.-0.02 2.5

  三、1.甲 甲没有先判定1-a是正数还是负数

  2.由已知得a-20xx≥0,a≥20xx

  所以a-1995+ =a, =1995,a-20xx=19952,

  所以a-19952=20xx.

  3. 10-x

  21.2 二次根式的乘除

  第一课时

  教学内容

  ? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。

  教学目标

  理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简

  由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。

  教学重难点关键

  重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。

  难点:发现规律,导出 ? = (a≥0,b≥0)。

  关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题。

  1.填空

  (1) × =_______, =______;

  (2) × =_______, =________.

  (3) × =________, =_______.

  参考上面的结果,用">、<或="填空。

  × _____ , × _____ , × ________

  2.利用计算器计算填空

  (1) × ______ ,(2) × ______ ,

  (3) × ______ ,(4) × ______ ,

  (5) × ______ .

  老师点评(纠正学生练习中的错误)

  二、探索新知

  (学生活动)让3、4个同学上台总结规律。

  老师点评:(1)被开方数都是正数;

  (2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

  一般地,对二次根式的乘法规定为

  ? = .(a≥0,b≥0)

  反过来: = ? (a≥0,b≥0)

  例1.计算

  (1) × (2) × (3) × (4) ×

  分析:直接利用 ? = (a≥0,b≥0)计算即可。

  解:(1) × =

  (2) × = =

  (3) × = =9

  (4) × = =

  例2 化简

  (1) (2) (3)

  (4) (5)

  分析:利用 = ? (a≥0,b≥0)直接化简即可。

  解:(1) = × =3×4=12

  (2) = × =4×9=36

  (3) = × =9×10=90

  (4) = × = × × =3xy

  (5) = = × =3

  三、巩固练习

  (1)计算(学生练习,老师点评)

  ① × ②3 ×2 ③ ?

  (2) 化简: ; ; ; ;

  教材P11练习全部

  四、应用拓展

  例3.判断下列各式是否正确,不正确的请予以改正:

  (1)

  (2) × =4× × =4 × =4 =8

  解:(1)不正确。

  改正: = = × =2×3=6

  (2)不正确。

  改正: × = × = = = =4

  五、归纳小结

  本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。

  六、布置作业

  1.课本P15 1,4,5,6.(1)(2)。

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第一课时作业设计

  一、选择题

  1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。

  A.3 cm B.3 cm C.9cm D.27cm

  2.化简a 的结果是( )。

  A. B. C.- D.-

  3.等式 成立的条件是( )

  A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1

  4.下列各等式成立的是( )。

  A.4 ×2 =8 B.5 ×4 =20

  C.4 ×3 =7 D.5 ×4 =20

  二、填空题

  1. =_______.

  2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.

  三、综合提高题

  1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?

  2.探究过程:观察下列各式及其验证过程。

  (1)2 =

  验证:2 = × = =

  = =

  (2)3 =

  验证:3 = × = =

  = =

  同理可得:4

  5 ,……

  通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。

  答案:

  一、1.B 2.C 3.A 4.D

  二、1.13 2.12s

  三、1.设:底面正方形铁桶的底面边长为x,

  则x2×10=30×30×20,x2=30×30×2,

  x= × =30 .

  2. a =

  验证:a =

  = = = .

  21.2 二次根式的乘除

  第二课时

  教学内容

  = (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。

  教学目标

  理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。

  利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。

  教学重难点关键

  1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。

  2.难点关键:发现规律,归纳出二次根式的除法规定。

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题:

  1.写出二次根式的乘法规定及逆向等式。

  2.填空

  (1) =________, =_________;

  (2) =________, =________;

  (3) =________, =_________;

  (4) =________, =________.

  规律: ______ ; ______ ; _______ ;

  _______ .

  3.利用计算器计算填空:

  (1) =_________,(2) =_________,(3) =______,(4) =________.

  规律: ______ ; _______ ; _____ ; _____ .

  每组推荐一名学生上台阐述运算结果。

  (老师点评)

  二、探索新知

  刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:

  一般地,对二次根式的除法规定:

  = (a≥0,b>0),

  反过来, = (a≥0,b>0)

  下面我们利用这个规定来计算和化简一些题目。

  例1.计算:(1) (2) (3) (4)

  分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。

  解:(1) = = =2

  (2) = = ×=2

  (3) = = =2

  (4) = = =2

  例2.化简:

  (1) (2) (3) (4)

  分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。

  解:(1) =

  (2) =

  (3) =

  (4) =

  三、巩固练习

  教材P14 练习1.

  四、应用拓展

  例3.已知 ,且x为偶数,求(1+x) 的值。

  分析:式子 = ,只有a≥0,b>0时才能成立。

  因此得到9-x≥0且x-6>0,即6

  解:由题意得 ,即

  ∴6

  ∵x为偶数

  ∴x=8

  ∴原式=(1+x)

  =(1+x)

  =(1+x) =

  ∴当x=8时,原式的值= =6.

  五、归纳小结

  本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。

  六、布置作业

  1.教材P15 习题21.2 2、7、8、9.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第二课时作业设计

  一、选择题

  1.计算 的结果是( )。

  A. B. C. D.

  2.阅读下列运算过程:

  ,

  数学上将这种把分母的根号去掉的过程称作"分母有理化",那么,化简 的结果是( )。

  A.2 B.6 C. D.

  二、填空题

  1.分母有理化:(1) =_________;(2) =________;(3) =______.

  2.已知x=3,y=4,z=5,那么 的最后结果是_______.

  三、综合提高题

  1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

  2.计算

  (1) ?(- )÷ (m>0,n>0)

  (2)-3 ÷( )× (a>0)

  答案:

  一、1.A 2.C

  二、1.(1) ;(2) ;(3)

  2.

  三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意,

  得:( x)2+x2=(3 )2,

  4x2=9×15,x= (cm),

  x?x= x2= (cm2)。

  2.(1)原式=- ÷ =-

  =- =-

  (2)原式=-2 =-2 =- a

  21.2 二次根式的乘除(3)

  第三课时

  教学内容

  最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

  教学目标

  理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。

  通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。

  重难点关键

  1.重点:最简二次根式的运用。

  2.难点关键:会判断这个二次根式是否是最简二次根式。

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题(请三位同学上台板书)

  1.计算(1) ,(2) ,(3)

  老师点评: = , = , =

  2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________.

  它们的比是 .

  二、探索新知

  观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:

  1.被开方数不含分母;

  2.被开方数中不含能开得尽方的因数或因式。

  我们把满足上述两个条件的二次根式,叫做最简二次根式。

  那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。

  学生分组讨论,推荐3~4个人到黑板上板书。

  老师点评:不是。

  = .

  例1.(1) ; (2) ; (3)

  例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。

  解:因为AB2=AC2+BC2

  所以AB= = =6.5(cm)

  因此AB的长为6.5cm.

  三、巩固练习

  教材P14 练习2、3

  四、应用拓展

  例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

  = = -1,

  = = - ,

  同理可得: = - ,……

  从计算结果中找出规律,并利用这一规律计算

  ( + + +…… )( +1)的值。

  分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。

  解:原式=( -1+ - + - +……+ - )×( +1)

  =( -1)( +1)

  =20xx-1=20xx

  五、归纳小结

  本节课应掌握:最简二次根式的概念及其运用。

  六、布置作业

  1.教材P15 习题21.2 3、7、10.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第三课时作业设计

  一、选择题

  1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。

  A. (y>0) B. (y>0) C. (y>0) D.以上都不对

  2.把(a-1) 中根号外的(a-1)移入根号内得( )。

  A. B. C.- D.-

  3.在下列各式中,化简正确的是( )

  A. =3 B. =±

  C. =a2 D. =x

  4.化简 的结果是( )

  A.- B.- C.- D.-

  二、填空题

  1.化简 =_________.(x≥0)

  2.a 化简二次根式号后的结果是_________.

  三、综合提高题

  1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:

  解: -a =a -a? =(a-1)

  2.若x、y为实数,且y= ,求 的值。

  答案:

  一、1.C 2.D 3.C 4.C

  二、1.x 2.-

  三、1.不正确,正确解答:

  因为 ,所以a<0,

  原式= -a? = ? -a? =-a + =(1-a)

  2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=

数学说课稿 篇4

  一、课时安排说明

  《近似数和有效数字》共分两课时,第一课时,主要内容是认识近似数和精确数;第二课时,掌握精确度和有效数字等相关知识。

  二、学生起点分析

  学生活动经验基础:在本章前面的学习过程中,学生已经对生活中的较小数据以及近似数有了一定的认识,并且经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力。并且经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

  三、教学任务分析

  在实际问题的基础上继续让学生认识生活中存在着大量的近似数;进一步让学生体会近似数的作用,能根据实际问题的需要选取近似数;结合实际问题情境让学生充分认识有效数字的概念,能按照要求取近似数,并体会近似数的意义及在生活中的作用。教学中所采用的问题情境尽可能来源于实际,充分挖掘学生生活中与数据有关的素材,使他们体会所学内容与现实世界的密切联系。为此,本节课的教学目标是:

  1.掌握精确度及有效数字的概念,并能熟练运用。

  2.提高学生分析数据,处理数据以及解决实际问题的能力。

  3.进一步体会数学的应用价值,发展“用数学”的信心和能力。

  本节的教学重点:掌握精确度及有效数字的概念,并能熟练运用。

  本节的教学难点:如何确定一个数据的有效数字。

  四、教学设计分析

  本节课设计了七个教学环节:回顾复习、学习新知、例题讲解、课堂练习、拓展提高、知识小结、布置作业。

  第一个环节:回顾复习

  活动内容:

  1.阅读报道

  中国是世界面积第3大国;中国有世界第一高峰珠穆朗玛峰,海拔8844米;中国共划分34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,人口约12.9533亿,占世界人口的21.2;共有56个民族,少数民族人口最多的是壮族,有1600万人。

  2.回答问题

  你能找出这篇报道中的精确数据和近似数据吗?

  3.知识回顾

  1.认识精确数和近似数,明确近似数产生的.原因。

  2.会用四舍五入法取近似数,并能进行合理比较。

  活动目的:改变原有的直接复习知识模式,通过阅读一篇报道,找出其中的近似数和精确数达到复习上一节内容的目的。其一可以改变枯燥的概念复习,使复习环节变得更加有趣;其二通过阅读可以让学生掌握更多的知识,例如此报道可以让学生更多的了解我们的祖国。

  活动注意事项:(1)复习过程中虽然不直接的对概念进行复习,但在学生回答完问题后,仍应对上节所学概念加以巩固(2)复习一方面是对上节课的回顾和总结,同时也应为新课的学习和探究作和铺垫和作准备工作。

  第二个环节:学习新知

  活动内容:学习新概念

  (1)精确度:

  利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  (2)有效数字:

  对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significantdigits).

  活动目的:通过学习精确度和有效数字两个新的概念,为下面解决实际问题做好准备工作。

  活动注意事项:(1)对于精确度概念的理解,要做到把精确度和四舍五入法有机的统一。让学生明确四舍五入到哪一位,就说这个近似数精确到哪一位;(2)对于有效数字的理解一定要让学生明确从那个数字起,到那个数字止;(3)这两个概念是这节课的基础和关键,只有让学生真正理解这两个概念,才能更好的去解决实际问题。

  第三个环节:例题讲解

  活动内容:

  例3按要求取右图中(见教科书)溶液体积的近似数,并指出每个近似数的有效数字。

  (1)四舍五入到1毫升;(2)四舍五入到10毫升

  解:(1)四舍五入到1毫升,就得到近似数17毫升,这个数有两个有效数字,分别是1,7;

  (2)四舍五入到10毫升,就得到近似数20毫升,这个数有一个有效数字,是2.

  例4据中国统计信息网公布的xxxx年中国第五次人口普查资料表明,我国的人口总数为1295330000人。请按要求分别取这个数的近似数,并指出近似数的有效数字。

  (数据来源:www.stats.gov.cn)

  (1)精确到百万位;(2)精确到千万位;(3)精确到亿位;(4)精确到十亿位。

  活动目的:通过对例3的学习让学生对精确

  度和有效数字的应用有了初步的认识,并且对这两个概念有了更深的理解;例4的学习让学生学会用科学记数法表示近似数。

  活动注意事项:(1)在例3的学习中,第二个问题得到近似数20毫升,部分学生会误认识有效数字的个数是两个,这时,教师一定要对该知识分析透彻,从定义的角度让学生明确如何正确的判断有效数字。(2)例4中对于较大数据,为了让大家更清楚地看出近似数的有效数字,例如:例4中,若不用科学记数法表示近似数据,则(2)和(3)的结果均可表示为1300000000,除非用文字加以注释,否则难以区分,因此,教师最好要求学生对于某些数据要用科学记数法表示。

  第四个环节:课堂练习

  活动内容:

  1.下列说法不正确的是()

  A.0.03精确到百分位,有一个有效数字B.1423精确到个位,有四个有效数字

  c.87.4精确到十分位,有三个有效数字D.5.670×10精确到百分位,有三个有效数字

  2.下列各近似数精确到万位的是()

  A.35000B.4亿5千万c.3.5×104D.4×104

  3.0.03296精确到万分位是,有个有效数字,它们是。

  4.近似数0.8050精确到位,有个有效数字,是。

  5.近似数4.8×105精确到位,有个有效数字,是。

  6.近似数5.31万精确到位,有个有效数字,是。

  7.一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

  (1)精确到10㎏是㎏,有个有效数字,它们是;

  (2)精确到1㎏是㎏,有个有效数字,它们是;

  (3)精确到0.1㎏是㎏,有个有效数字,它们是。

  活动目的:通过课堂练习巩固落实学生对精确度和有效数字这两个知识点的应用。

  活动注意事项:(1)前六个练习题是没有实际背景的基础练习,要求学生应在短时间内高效完成,第七题是实际应用问题,要让学生学会数学问题和实际问题间的互相转化。(2)例如近似数4.8×105精确到哪一位的这类判断精确度的题目要强调先还原数据,再判断精确到哪一位。

  第五个环节:拓展提高

  活动内容:

  世界上最大的沙漠——非洲的撒哈拉沙漠可以粗略的看成是一个长方体,撒哈拉沙漠的长度大约是5149900m,沙漠的深度大约是3.66m。已知撒哈拉沙漠中沙的体积约为3345km3。

  (1)将沙漠的沙子的体积表示成立方米,并保留两个有效数字;

  (2)撒哈拉沙漠的宽度是多少?(保留三个有效数字)

  (3)如果一粒沙子体积大约是0.0368mm3,那么,撒哈拉沙漠中有多少粒沙子?(保留三个有效数字)

  解:(1)3345km3=3345×109m3=3.345×103×109m3≈3.3×1012m3

  活动目的:本节课的知识目标是掌握精确度及有效数字的概念,并能熟练运用。这个环节对学生提出了更高的要求,先要通过数据的计算,再按要求取近似数据。

  活动注意事项:(1)要提醒学生注意单位的换算,数据计算必须在单位统一的情况下才能进行;(2)计算过程提倡学生用计算器进行运算;(3)对于能力达不到的学生在这一环节不做过高要求。

  第六个环节:知识小结

  活动内容:师生互相交流总结本节课上应该掌握的相关知识:1.掌握精确度和有效数字的概念。2.会按照要求利用科学记数法取近似数。教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生畅谈个人的学习感受。

  活动目的:一方面通过小结对今天所学知识进行一个概括和升华,对学生易错的知识加以强调和补充;另一方面,通过教师和学生的交流,进一步激发学生的学习兴趣,鼓励学生发表自己的见解,为今后的学习打好坚实的基础。

  活动注意事项:在总结中要发挥学生的主体地位,让学生做课堂的主人,让学生自己进行总结归纳;教师在这一环节中要仔细聆听,对于学生的错误和漏洞要及时作出纠正和补充。

  第七个环节:布置作业

  活动内容:

  教材习题3.3知识技能1,2

数学说课稿 篇5

  一、教材分析

  概率是高中数学的新增内容,它自成体系,是数学中一个较独立的学科分支,与以往所学的数学知识有很大的区别,但与人们的日常生活密切相关,而且对思维能力有较高要求,在高考中占有重要地位。

  本节内容在本章节的地位:《条件概率》(第一课时)是高中课程标准实验教材数学选修2—3第二章第二节的内容,它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础。

  教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模。

  二、教学目标

  根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

  基础知识目标——掌握条件概率的定义及计算方法

  思想方法目标——归纳、类比的方法和建模思想

  能力培养目标——培养学生思维的灵活性及知识的迁移能力

  根据这两年高考改卷的反馈信息,考生在概率题的书面表达上丢分的情况是很普遍的,因此本节课还想达到:

  表达能力目标——培养学生书面表达的严谨和简洁

  个性品质目标——培养学生克服“心欲通而不能,口欲讲而不会”的困难,提高探索问题的积极性和学习数学的兴趣

  三、教法

  在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以生为本,遵循学生的认知规律,坚持以教师为主导,学生为主体的教学思想,体现循序渐进的教学原则,我采用引导发现法、分析讨论法的教学方法,通过提问、启发、设问、归纳、讲练结合、适时点拨的方法,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”,“练”有所“获”,使传授知识与培养能力融为一体。

  四、学法

  以建构主义为指导,采用以启发式教学为主,同时结合师生共同讨论、归纳的教学方法,根据学生的认知水平,为课堂设计了:

  ①创设情景——引入概念

  ②类比推导——得出公式

  ③讨论研究——归纳方法

  ④即时训练——巩固方法

  ⑤总结反思——提高认识

  ⑥作业布置——评价反馈

  六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

  五、教学过程

  创设情景——引入概念

  首先引入两个实际问题,激发学生的兴趣。

  【实例1】3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是多少?若第一个同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率是多少?

  【实例2】有5道快速抢答题,其中3道理科题,2道文科题,从中无放回地抽取两次,每次抽取1道题,两次都抽到理科题的.概率是多少?若第一次抽到理科题,则第二次抽到理科题的概率是多少?

  每个实例有两个问题组成,后一个问题多一个限制条件,教师引导学生对比两个实例中前后问题的区别和联系,概括出条件概率的定义。

  由于判断事件的类型对选择概率公式起着决定性影响,因此在引入定义后让学生再做一组判断题练习以巩固对定义的理解。

  【练习】判断下列是否属于条件概率

  ⒈、在管理系中选1个人排头举旗,恰好选中一个的是三年级男生的概率

  ⒉、有10把钥匙,其中只有1把能将门打开,随机抽出1把试开,若试过的不再用,则第2次能将门打开的概率

  ⒊、某小组12人分得1张球票,依次抽签,已知前4个人未摸到,则第5个人模到球票的概率

  ⒋、两台车床加工同样的零件,第一台的次品率未0.03,第二台的次品率为0.02,两台车床加工的零件放在一起,随机取出一个零件是发现是次品,则它是第二台机床加工的概率是多少?

  ⒌、箱子里装有10件产品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,现从中任取3件,若取得的都是合格,则仅有1件是一等品的概率

  通过以上练习使学生能准确区分条件概率与一般概率。

数学说课稿 篇6

  教材分析:

  本节课求百分率,是新人教版教材 六年级上册 第六单元第二节课的内容,它是在百分数的意义教学之后的例题教学,通过一个例题同时教学求百分率和分数、小数化百分数。结合新课标,我个人体会,教材在编排上体现以下的意图和设计思路:

  1、本节课的内容是以解决问题为主线,在解决问题的过程中,一次又一次地遇到新问题,促使学生应用已有知识自主解决。这样就关注了学生已有的知识经验和基础,为学生的自主学习提供了空间,有利于唤醒学生的知识经验,并能增强学生自主学习的意识。

  2、教材的编排一方面是凸显数的转化的必要性,即让学生体会到:把分数、小数化成百分数是解决百分率这个实际问题的需要,体现数学学习的价值,另一方面又把小数化成百分数、分数化成百分数整合在一起,目的是:在解决同一个问题的过程中实现多维目标,让学生感受数学知识的内在联系。

  3、教材的编排,有利于学生参与解决问题的全过程,体验解决问题的方法和策略,掌握基本的观察、分析、比较、发现的学习方法,和思考问题、解决问题的方法,强化了知识的迁移、有意识的培养学生初步的推理能力,发展学生的数学思维,积累数学学习的活动经验。据上教材分析我

  本节课的教学目标是:

  1、理解百分率的含义,会解决求一个数是另一个数的百分之几的问题。

  2、在解决问题的过程中学会把分数、小数化成百分数的方法。感悟转化的必要性。

  3、引导学生走入情景,产生问题意识,经历从数的角度发现问题和提出问题,并运用已有的知识分析与解决实际问题的过程,发展应用意识和实践能力。

  教学重点:理解百分率的含义,掌握小数、分数化成百分数的方法。

  教学难点:根据不同的情况,灵活的掌握转化方法。

  教学过程:

  在教学过程中我采用如下教学策略:

  1、引导学生走入情境,自主产生问题意识,发现、提出数学问题。

  教学时,我把主题图活用为学生身边的急需他们解决的实际问题,使学生很快走入情境,进入角色,成为主人,思考遇到的问题应该如何解决,在认知需求的驱动下,很容易发现了问题并提出要解决的问题---如何求命中率。

  2、关注学生的生活经验和已有的知识基础,使学生亲身经历新知识的生成与形成过程。渗透数学思想,积累数学活动经验。

  本节课的教学,我注意以问题为引领,让学生在解决问题的过程中,运用已有的.生活经验和知识基础,自己通过计算、尝试、观察、类比等学习活动中,独立解决遇到的新问题,经过自己的努力与合作交流,学会了数的转化方法,并发现归纳出了转化的规律,体会了基本的思想方法,建立生活中百分率表达式的数学模型,发展了合情推理能力。如:课中,本节课的教学注意了数学思想方法的渗透,在解决问题的过程中,通过引导学生进行观察、分析、比较、发现、归纳、总结的数学活动,使学生感悟了最基本的数学学习方法。感受数学学习抽象性、层次性和逻辑性的数学思维特点,强化了模型的解释与应用的过程。最后通过回顾反思,让学生总结学习方法、积累了学习的活动经验,经历分析问题、解决问题的全过程。落实了知识技能、过程与方法、情感态度三维目标。

  3、关注数学 本质,突出数学思想方法的落实

  课标指出,课程内容的教学,它包括数学结果的形成过程和蕴含的数学思想方法,本节课,我注意在落实知识技能目标的同时,关注了数学的本质,为学生搭建了感悟体验数学思想方法的平台。

  在总结小数,分数化百分数时,我仅仅抓住板书这一直观的思维材料,通过引导学生有序观察,对比分析,充分比较,让学生经历了由特殊到一般的抽象,概括和归纳总结的数学思维活动过程,使学生感悟了最基本的数学思想方法。

  4、激发兴趣,调动思维,凸显学生主体地位的落实。

  本节课的教学内容比较抽象,又不能以直观的教学手段作支撑,学生的学习完全凭自己的生活经验和已有的知识基础,进行知识的迁移、生成、发展和类推,所以,教学时,调动学生思维上的参与是本节教学的重中之重,也是难中之难,因此我采用了激发兴趣和求知欲望的教学策略,使学生参与到数学的学习中,强调了思维上的参与。比如课的一开始,我就把问题抛给学生,根据图中两人争执的问题,如果让你来当裁判员,你认为,需要解决什么问题?学生自然进入问题情境,提出了数学问题,明确了解决问题的方向;在求王涛的命中率时,先遇到了小数、分数化成百分数这一问题,学生自己想办法解决了问题,在计算李强的命中率时,又遇到了除不尽的情况,又通过引导学生回顾以前的知识,唤醒了已有的知识经验,问题得到解决,学生始终处于主体地位。

  5、障碍励志 激发参与的动力

  学生的学习积极性主要靠学习责任感和学习兴趣两个要素得以保持,两者相辅相成。励志能使学生学习的积极性更趋于稳定和自觉。要想激励学生努力奋发向上的志向,离不开障碍的磨炼。因此教学时,我有效利用教材内容这一教学资源,根据学生的学习进程,不断的提出或使学生遇到一个又一个努努力就能跨越的小障碍,从而激发学生排除万难,勇攀知识高峰的动力,使学生真正投入到探知过程,成为学习的主人。

数学说课稿 篇7

  一、说教材

  1.教学内容:

  这节课内容是人教版四年级上册第三单元的例题、想想、做做第1—4题。

  2.教材分析:

  本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

  教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的工具。

  3.说教学目标

  基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

  (1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

  (2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

  (3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

  4.教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

  教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

  5.课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

  二、说教法和学法

  (1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

  (2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。

  三、说教学过程

  结合本课特点,我设计了以下五个教学环节:

  1.情境引入,猜想规律

  (1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

  (2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

  (1)6× 2= 12

  (2) 6×20=120

  (3) 6× 200=1200

  (3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

  『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

  2.动手操作,验证规律

  (1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想 。并进一步提出:这个猜想是不是适合所有的乘法算式?

  为您提供优质资源!

  为您提供优质资源!

  一个因数 另一个因数 积 积的变化

  (1) 6 × 2 = 12

  (2) 6 × 20 = 120

  (3) 6 × 200 = 1200

  (2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。 全班交流,通过交流进一步确认猜想成立。

  (3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

  『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的`数学知识与技能、数学思想和方法,使学生终生受益。

  3.实践运用,巩固规律

  (1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

  (2)用规律解释口算、笔算、和简算。

  口算:16×5= 16×500= 16 ×5000=

  竖式计算:17×5 17×50 17×500

  简便计算:125×48=125×8×6

  让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

  (3)补充题:20xx年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

  如果坐汽车,每小时行使60千米,4小时可以多少千米?

  如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

  这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

  『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

  4.拓展练习,升华规律

  36×5400= 18×24 =

  36×540 = 180×240 =

  36×54 = 1800×2400 =

  『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

  5.总结全课,内化规律

  通过今天这节课的学习,你有了什么收获?还有哪些疑问?

  『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

  四、说板书设计。(见课件)

  综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

数学说课稿 篇8

  一、说教材

  1. 教学内容:义务教育课程标准青岛版实验教科书数学一年级下册。

  2. 教材简析:

  教材先安排加法,再安排减法,意图是让学生更深刻地体会加减法算式之间的联系,十几减九是在学生学习了十几和九加法的基础上学习的,同时又是二十以内退位减法的起始课,是学习两位数减去一位数的退位减法的重要基础知识,能为后继教材的学习做好迁移准备。

  3. 教学目标:根据教学内容我制定了以下的教学目标:

  知识技能:让学生经历从实际情况中提取、解决问题的过程,理解计算十几减九的方法,并能正确计算十几减九。

  数学思考:让学生在观察操作中逐步培养探究、思考的意识和能力,重视算法多样化,培养创新意识和思维的灵活性。

  情感态度:让学生在独立思考的基础上加强交流,体验与同伴合作学习的快乐,培养合作交流的意识,提高学习的自信心。

  4、教材重难点:根据教材特点,我认为本节课的教学重难点分别是:

  教学重点:让学生通过动手实践、自主探索、合作交流,掌握十几减九的算法。

  教学难点:学生自己动手操作,探究并理解十几减九的算法。

  本课突破重难点的关键是:让学生建立新旧知识的联系,让他们学会迁移,用类推的思想方法去解决问题。

  二、说学生

  一年级学生的思维仍处于形象思维为主的阶段,但已经具备了一定的观察、比较、综合的意识。在浓厚兴趣的状态下,学生产生较强的自信心和表现欲望,形成积极的学习动机。

  三、说教学方法

  根据教材及学生的特点,我主要采用操作探究与启发式相结合的教学方法。一年级学生主要依赖于直观性的教学进行思维。动手操作让学生手脑协作,更有利于学生思考问题。英国教育家皮斯博说:“如果你想儿童能够独立的批判地思考,并且有想象的能力,你就应该采取加强这种智慧品质的方法。”要把学生培养成富有创造力的开拓型人才,在教育方法上应采取启发式。正如孔子云:“不愤不启,不悱不发。”

  四、说教学过程

  根据以上各方面的特点,我想通过五个环节来完成我的教学:

  创设情景,活跃气氛;引导参与,探究算法;自选算法,尝试练习;

  分层练习,在玩中学;总结体验,扩展延伸

  (一)创设情景,活跃气氛

  俗话说:“好的开始是成功的一半。”一节课开始时学生的状态就为本节课定下了基调。一开始我便用猴老板卖桃子这故事引入,激发学生求知欲。

  课件出示:猴老板喊:“卖桃啦!卖桃啦!又香又甜的桃,快来买呀!”小兔走过来,说:“猴先生,我买9个”。

  提问学生:你能提出哪些数学问题?(还剩多少个?)

  要求还剩多少个该怎么列式?又是怎么计算呢?

  这样创设有趣的情境,激发探究的.欲望,学生主动积极地投入到新课的学习之中。

  (二)引导参与、探究算法

  首先要调动学生已有的经验,为新知的学习找到相关的理论基础,让学生学会迁移,学生在学习了十几和九的加法之后,已基本了解了学习的思路与方法,可大胆放手,让学生以6人小组,充分利用自己的学具,自主学习,相互启发,相互帮助。同时还应看到学生之间的差异,有些学生可以不利用学具,直接想出结果,也应该给他们展示的机会。

  根据学生交流的情况,寻找适当地机会用课件演示拿桃的过程,学生可能出现以下几种情况:

  (1) 一个一个拿,拿了9个,还剩3个;

  (2) 先拿盒子外的2个,再拿盒内的7个,这样一共拿去9个,还剩3个。

  (3) 从盆里拿出9个,剩下1个和外面的2个合起来是3个;

  (4) 先从12个中去掉10个,再用多拿的1与2合起来是3个。

数学说课稿 篇9

  一、课题

  各位专家,各位评委,大家好。

  今天我说课的内容是《 》,它是义务教育课程标准实验教科书( )年级( )册第( )单元的内容,属于(数与代数、空间与图形、统计与概率、实践与综合应用)领域的知识

  二、说教材、目标

  在学习本课内容以前,学生已经系统地学习了( ),已经有了( )的经验,本节课教材首先出示( )场景图,列举了( )种方法来解决问题,联系已在生活中的感性经验,目的是让学生(感受解决问题策略的多样性,方法的多样化),提高学生解决问题的能力。

  基于以上对教材的认识,根据数学课程标准的 基本理念,制定了如下目标:

  1、

  2、

  3、

  本课时的重难点是:

  三、说教学流程

  在分析教材,合理选择教法与学法的基础上,我预设的教学程序分()大环节进行:

  (下面就以上四大环节做具体的阐述)

  第一环节:创设情景,激趣导入(引出问题、发现问题,激疑导入)

  这一环节我通过创设( )情景,让学生主动提出( )问题,从而引出课题( )

  (爱因斯坦说:“提出一个问题比解决一个问题更重要。”老师经常问学生“你还能提出哪些数学问题”,有助于培养学生从数学角度提出问题的意识与习惯,从而促使学生在下面的环节中进行研讨、探究、思考,也为以下解决问题的环节做好铺垫。)

  古人云:疑者,觉悟之机也。这种导入能激起学生学习的兴趣和欲望,就如在其“思维的水池”中投以一片砖石,激起思维的波澜,收到“一石冲开水底天”的效果。

  第二环节:自主合作、探索方法。(研究问题、解决问题)

  这一环节我分( )个层次组织教学。

  第一层次,独立思考、(互相讨论)说说方法

  第二层次,选择方法,小组合作(独立计算)

  第三层次,互相交流,比较分析,进行小结

  (这样的设计,以提高学生解决问题的能力为落脚点,让学生从事主动的观察,猜测,推理,实验,交流等活动,鼓励学生提出多种解决问题的方法,使学生在解决问题的活动中不知不觉的受到数学思想方法的熏陶和感染,从而进一步体验到解决问题策略的多样性,培养实践能力和创新精神,并在分析比较中,感悟和寻找解决问题的最佳策略。)恰如教育家文兰森所说:最不完美的`创新也要比完善的守陈伟大一百倍。

  牛顿有句名言:没有大胆的猜想,就没有伟大的发明和发现。

  (放手让学生操作,并把学生的操作与语言、思维联系起来,这样的操作就不仅仅是操作,而是为培养学生的思维能力提供了源泉,让学生凸现真实的个性,他们在操作中求新、求异,有利于创新能力的培养和个性的发展。赞可夫有句名言:教会学生思考,对学生来说,是一生中最有价值的本钱。)

  第三环节:实践应用,巩固深化( 联系实际、拓展应用 )

  结合书中练习,分( )层次进行巩固

  1、

  2、

  3、

  4、

  (在这些多层次的练习中,运用学到的知识来解决他们学习生活中的实际问题,既是对知识的巩固,又是对思维的又一次拓展,使他们在解决问题的同时,体验数学学习的快乐,体验学习数学的价值。)

  第四环节:总结提炼

  (俗话说:编筐编篓,全在收口,通过总结,促进学生对一堂课的教学进行梳理,并把学习的触角向外拓展延伸,培养学生探究的能力。)

  整堂课,我力求体现以下教学理念:

  1、体现数学与生活的密切联系,让学生在生活中“触摸”数学。

  2、注重数学思想方法的渗透,鼓励解决问题策略与算法的多样化。而鼓励解决问题策略多样性的前提是把学习的主动权还给学生。古希腊学者普罗塔戈说过:头脑不是一个被填满的容器,而是一束待点燃的火把。把学习的主动权——学习交流、探索新知的机会交给学生,让学生有足够的时间独立思考、探索和建构自己的数学意义,最大限度的发挥学生的自主性,创造性。并通过比较各种策略与算法的特点,选择优化适合自己的策略与算法。从而发展学生的思维,教育家裴斯泰洛齐认为:教育的主要任务,不是积累知识,而是发展思维。让课堂成为学生思维的运动场。

  3、重视培养学生应用数学的意识与独立解决问题的能力,把数学学习与解决生活中的数学问题结合起来,培养学生学会用数学的眼光观察现实生活,丛中发现问题,提出问题,解决问题,体会数学的广泛应用与实际价值,获得良好的情感体验。

  4、始终让学生成为学习的主人,注重评价,关注学生情感与态度形成的发展,让问题解决的过程,也成为学生们态度,情感,价值观及学习能力全面发展的过程,让问题解决的过程,成为学生们获得良好的情感体验的过程。让我们的数学课堂充满生活气息,充满人文气息,充满师生的灵性与共性。

  各位评委,以上所说的,只是我预设的一种方案,但是课堂是千变万化的,会随着学生和教师的灵性发挥而随机生成的。预设效果如何,最终还要和学生、课堂结合。

  说课不足之处还请多多指导,同时希望各位评委能给我一个实践的机会,谢谢!