- 初中数学《因式分解》说课稿 推荐度:
- 相关推荐
初中数学因式分解说课稿
作为一位杰出的教职工,可能需要进行说课稿编写工作,借助说课稿我们可以快速提升自己的教学能力。我们该怎么去写说课稿呢?下面是小编整理的初中数学因式分解说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学因式分解说课稿1
一、说教材
1、关于地位与作用。
本说课的内容是数学第二册7、1《因式分解》。因式分解不言而喻,就整个数学而言,它是打开整个代数宝库的一把钥匙。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。
2、关于教学目标。
根据因式分解一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,特制定如下教学目标:
(一)知识与技能目标:
① 了解因式分解的必要性;
② 深刻理解因式分解的概念;
③ 掌握从整式乘法得出因式分解的方法。
(二)体验性目标:
①感受整式乘法与因式分解矛盾的对立统一观点;
②体验由和差到积的形成过程,初步获得因式分解的经验。
3、关于教学重点与难点。
重点是因式分解的概念。理由是理解因式分解的概念的本质属性是学习整章因式分解的灵魂,难点是理解因式分解与整式乘法的相互关系,以及它们之间的关系进行因式分解的思想。理由是学生由乘法到因式分解的变形是一个逆向思维。在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。
4、关于教法与学法。
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法。因此,我们应该重点阐述教法。一节课不能是单一的教法,教无定法。但遵循的原则——启发性原则是永恒的。在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”。在上述思想为出发点,就本节课而言,不妨利用对比教学,让学生体验因式分解的必要性;利用类比教学,以概念的形曾成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。教师充分依照学生的认知心理,不断创设“最近发展区”,造就认知冲突,促进学生不断发现、不断达到知识的内化。
不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感创造和谐的课堂氛围,这是最重要的。
二、说过程。
第一环节,导入阶段。教师出示下列各题,让学生练习。
计算:(1)(a + b)^2 ; (2)(5a + 2b)(5a – 2b); (3)m(a + b)、
学生完成后,教师引导:把上述等式逆过来看,即
(1)a^2+2ab+b^2=(a + b)^2;(2)25a^2– 4b^2 =(5a + 2b)(5a – 2b);(3)ma+mb= m(a+ b)、
成立吗?
△安排这一过程的意图是:
一是复习整式的乘法,激活学生原有整式乘法的认知结构,促使新旧认知结构的联结,满足“温故而知新”的`教学原理。
二是为本节课目标的达成作好垫铺。在此基础上引出课题——因式分解。
第二环节,新课阶段。
1、对比练习。让学生练习:当a=101,b=99时,求a2-b2的值、教师巡视,并代表性地抽取两名学生板演,给出两种解法。
△教师安排这一过程的意图是:利用对比分析,让学生体会,把a2-b2化为整式积的形式,给计算带来的优越性,顺应了因式分解概念的引出。
2、类比练习。让学生练习:分解下列三个数的质因数
(1)42;
(2)56;
(3)11、
在此,教师帮助归纳:42与56两个数可以化为几个整数的积,叫做因数分解。本身是质数的数就不能再分解。同时设疑,对于一个多项式能化为几个整式的积的形式吗?在师生互动的基础上,要求学生翻开课本阅读课本因式分解定义。
3、创设问题情景。同学们,我们不能迷信课本,课本的因式分解定义有毛病,请大家逐字研读,找出问题。让学生分四人小组讨论。(事实上正确)提问学生讨论结果,课本定义是正确的。教师板书:
一个多项式→几个整式+积→因式分解
师生归纳要注意的问题:
(1)因式分解是对多项式而言的一种变形;(2)因式分解的结果仍是整式;
(3)因式分解的结果必是一个积;(4)因式分解与整式乘法正好相反。
板书:
4、学生练习课本p152练习第1、2两题。
△教师安排这一过程意图是:通过对比教学,提高学生对因式分解的知觉水平;通过具体数的分解这一类比教学,产生正迁移,认识新概,符合学生概念形成的认知规律;通过故设偏差法,制造认知冲突,让学生咬文嚼字因式分解概念,引导学生主动探求,造求学生自主学习的积极势态,促进学生对概念本质属性的理解;让学生用正反习题的练习,达到知觉水平上的运用,促使对因式分解概念的理解。从而使本节课达到高潮。
第三环节。尝试练习,信息反馈。
让学生尝试练习:课本p152第3题,并引导中下学生看p152例题,教师及时点拨讲评。
△教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到正强化。
第四环节。小结阶段。
这是最后的一个环节,教师出示“想一想”:下列式子从左边到右边是因式分解吗,为什么?
学生展开讨论,得到下列结论:
A、左边是乘法,而右边是差,不是积;
B、左右两边都不是整式;
C、从右边到左边是利用了因式分解的变形方法进行分解。
由此可知,上式不是因式分解。进而,教师呈现因式分解定义。
△教师安排这一过程意图是:学生一般到临近下课,大脑处于疲劳状态,注意力开始分散。教师如果把定义及要注意的问题进行小结后直接抛给学生,只能是是似而非。通过让学生练习,在练习中归纳,再一次点燃学生即将沉睡而去的心理兴奋点,点燃学生主题意识的再度爆发。同时,学生的知识学习得到了自我评价和巩固,成为本节课的最后一个亮点。
初中数学因式分解说课稿2
我说课的题目是选自华东师大版,八年级上册,第十四章第四节,因式分解,这是初中数学传统的经典,在新课标的理念下,重新理解它深刻的内涵。
为此,我设定说课程序是:
一、重新审视因式分解的教育价值
二、教材处理的设想
三、教学总体设计
四、教学过程概述
(一)重新审视因式分解的教育价值
传统的因式分解,是数学的工具使学生熟练掌握一些因式分解技能技巧,本来十分简单的问题演绎得十分复杂(如填数法,拆项法,凑和法,十字相乘法)
新课程把因式分解作为培养学生逆向思维,全面思考,灵活解决矛盾的载体。为此,淡化理论。简化难题,紧紧掌握最基本的教学方法(提取公因式法和公式法)即可。这是新课程体现教育价值最明显的变化。为此,在学生思维方法和对世上的'事,要正,反两方面认识上下功夫,是这节课的重要所在。
通过整式乘法与因式分解互为逆向变换,使学生澄清这种逆是反过来的变换,不是逆运算—是教学的难点(逆运算,是在一个算式中,以两种形式不同实质不变的两种运算,而因式分解是一种恒等变换的两种说法)
为实现本节课的教育价值,在教学目标的确定上,重点考虑我的学生理解能力弱,善于模仿,满足于一知半解,我确定:
1、知识的能力目标:理解因式分解的意义,掌握提取公因式法和公式法,激发学生学习兴趣,培养学生创编因式分解题目的能力
2、方法与过程目标:采用自学自练的方法,逐见打开学生思维的大门,学会两分法看问题,体验知识发生过程就是学生思维发展的全过程
3、情感态度与价值观:通过情境教学,使学生在参与中激发学习情感,关注每一个学生的思维变化,鼓励成功全面体现学生的价值观,使学生满腔热忱,科学积极的态度,投入本节课的学习
(二)教材处理设想
我以我是教学资源的开发者的身份,重新组织教学内容,增加教学情境的创设,明确目的与动机,用实际问题是学生体验到这节内容的价值(见教学过程)
(三)教学总体设计
教学总体框架:教师设计生活中的实际问题,使学生在问题情境中展开思考→通过揭示因式分解的概念学习因式分解的意义→学生实践探索,发现提取公因式和公式法→熟练运用这种方法解题,发展学生的理性思维→通过学生的编题活动,培养学生思维创造性。
教学的主体是概念与方法20分钟训练上主题部分由学生自主探索,合作学习。
(四)教学过程概述
教学环节一:创设情境:“去过本溪吗?”“本溪的著名矿产是什么?”〈铁矿〉本溪歪头山的铁矿石,每吨含铁75%,采矿工人第一天采矿石203吨,那么,第一天矿石含铁多少?(75%×203)第二天采矿石198吨含铁(75%×198)第三天采矿216吨,含铁(75%×216)现将这三天采矿石的含铁量总数用代数式表示:75%×203+75%×198+75%×216,还可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采矿数就有ax+ay+az=a(x+y+z)
通过此例,揭示因式分解的概念:把一个多项式化成几个整式积的形式,就是因式分解,结合ax+ay+az=a(x+y+z)揭示,这种方法叫提取公因式法“正好相反”通过讨论,认识到整式乘法与因式分解不是逆运算,而是互逆变换,从而突破了教学难点,实现了教学的第一目标
教学环节二:思维在探索中展开:教学中,抓住“反过来”让学生从思维的逆向考虑,如何分解因式,这里在学生完成
a(x+y+z)=ax+ay+az的基础上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
(制课件)
整式乘法因式分解
原型单项式与多项式、多项式与多项式相乘单项式与单项式、单项式与多项式、多项式与多项式相加
结果多项式因式乘积
范围都能完成不能完成:3ab+5ac+7mn
在学生的实践过程中,认识到多项式的因式分解是有条件限制的,不是所有的多项式都能因式分解。因此,会观察,判断,十分重要。
教学环节三:思维在展开教学中定势:本节课重点,掌握1、提取公因式法2、公式法对于这一新知识点,学生感到陌生,必须先使他们头脑中牢记,这就是先形成的思维定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特点:1两项式2平方3异号
教学环节四:思维在编题中创新:学生在认识整式乘法与因式分解的关系后,就不难编出很多因式分解的题目来(要求编题中,简单,明了,易解)
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习情感,态度的价值观上发生深刻的变化。
【初中数学因式分解说课稿】相关文章:
初中数学《因式分解》说课稿04-14
初中数学因式分解教案06-15
初中数学因式分解教案03-01
《因式分解》说课稿07-06
初中数学知识之因式分解03-30
初中数学知识点因式分解08-15
《因式分解》说课稿10篇11-22
《因式分解》说课稿9篇12-21
《因式分解》说课稿8篇07-06
初中数学的说课稿02-16