当前位置:育文网>教学文档>说课稿> 数学说课稿

数学说课稿

时间:2022-02-03 01:54:51 说课稿 我要投稿

关于数学说课稿模板集合八篇

  作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,借助说课稿可以有效提高教学效率。说课稿应该怎么写才好呢?下面是小编精心整理的数学说课稿8篇,欢迎阅读与收藏。

关于数学说课稿模板集合八篇

数学说课稿 篇1

  今天我说课的内容是华东师大版八年级数学下册第十七章反比例函数及其图象。

  一、教材分析:

  本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、教学目标分析:

  根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:

  (一)知识目标:

  1、使学生了解反比例函数的概念

  2、使学生能够根据问题中的条件确定反比例函数的'解析式。

  3、使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

  4、会用待定系数法确定反比例函数的解析式。

  (二)能力目标:

  培养学生的观察能力,分析能力,独立解决问题的能力。

  (三)德育目标:

  1、向学生渗透数学来源于实践又反过去作用于实践的观点。

  2、使学生体会事物是有规律地变化着的观点。

  (四)美育目标:

  通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

  三、教学重点,难点。

  (一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

  (二)教学难点:画反比例函数的图象。

  (三)解决方法

  (1)由分组讨论,积极思考,分析问题,发现结论。

  (2)训练,研究,总结

  因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、教学方法:

  初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究。

数学说课稿 篇2

  说教材:

  1、本节内容是人教版六年级上册第四单元的内容

  2、教材的地位和作用

  学生从学习直线图形的面积到学习曲线图形的面积,无论是内容本身,还是研究方法都是一次质的飞跃。在这节课中学生将初步学习研究曲线图形的基本方法-----“化曲为直”、“化圆为方”,为以后学习圆柱、圆锥等知识奠定基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

  根据本节课的特点确定如下教学目标.

  1、知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程。

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题。 2、能力目标:

  使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  3、情感目标:

  通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  根据本节课的内容,确定以下教学重点与难点:

  教学重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  小学六年级上册数学《圆的面积》说课稿

  教学难点:由于圆与以前学习的`直线图形性质有很大不同,对“曲线图形”转化为直线图形学生是第一次接触,对学生已有知识和经验都是一种挑战,因此,“化圆为方”的转化方法和极限思想的感受是本节课的难点。

  说教法:

  针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

  说学法:

  通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时间和自由度使学生成为课堂的主人。

  说教学过程:

  (一)、复习旧知,渗透转化

  新课开始,我先让学生回忆已经学过的圆的认识、周长及长方形、平行四边形面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

  圆的面积说课稿

  (二)、创设情景,引出课题

  出示“一只小狗被它的主人用一根长10米的绳子栓在草地上,问小狗能够活动的范围有多大?”的ppt课件。启发学生进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题,讲授圆的面积的概念。融新知识于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

  (三)、合作学习,探索新知

  为了帮助学生开展探究活动,第一步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。学生进行四人小组活动后,我让各小组的代表展示自己剪拼的作品,根据学生出现的多种情况,我利用课件演示把一个圆平均分成8等份、16等份、32等份、64等份、128等份后,并拼成近似的长方形,这样设计让学生在视觉上得到证实:将圆平均分的份数越多,拼成的图形越接近长方形。当把圆平均分成无数份时,拼成的图形就成了长方形,即“化曲为直”。 这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

  第二步,我让学生讨论:根据转化的图形如何推导出圆的面积计算公式?拼成的近似长方形的长相当于圆的什么?宽相当于圆的什么?学生通过观察讨论发现:在剪拼的过程中,图形的形状变了,但面积没变,拼成的近似长方形的面积等于圆的面积,近似长方形的长等于圆的周长的一半,宽等于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积等于圆的周长的一半乘半径,从而推导出圆的面积计算的字母公式s=πr 。

  学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成八份、十六份、三十二份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中初步理解了。

  在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

数学说课稿 篇3

  这题的第一个问题学生很容易上当,把它当成用规律进行计算。这题的设计要让学生知道认真审题的重要性。

  3.请你参加:

  12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?

  这题知道了正方形四边上的.总人数,求每边有几个学生,是例题的逆向思考的题目,所以要在学生充分掌握规律的基础上完成。学生计算后请12名学生在教室里围一围。

  4.请你设计:

  学校为了庆祝元旦,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?

  设计意图:整个练习从现实生活中出发提出数学问题,让学生在游戏中,在具体情境中充分动口、动手、动脑,培养了学生的自主学习能力、合作意识和科学探究精神。

数学说课稿 篇4

  一、说教材

  《算术平方根》是人教20xx版七年级数学第六章实数的第一节内容。本节课学习第一个课时----算术平方根,是学习实数的准备知识,为学习二次根式作铺垫,提供知识积累。

  二、说教学目标

  结合着七年级学生的认知结构及其心理特征,我制定了以下的教学目标:

  1.让学生理解算术平方根的概念,正确的读写有关算术平方根的式子,会用平方运算求完全平方数的算术平方根。

  2.让学生经历从实际例子归纳出算术平方根概念的过程,理解概念的本质。

  三、说教学的重难点

  教学重点:算术平方根的概念

  教学难点:掌握算术平方根的概念和性质、能正确求出完全平方数的算术平方根及利用双重非负性解决问题

  四、说学情

  1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。

  2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

  五、说教法与学法

  教法:以前学生虽然学过乘方运算,但由于间隔时间过长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取以下教学方法:(1)情境教学法:(2)对比教学法:把二次方与算术平方根的概念,计算过程等对比起来进行教学,降低了学生的学习难度。

  学法:小组交流合作法和自主学习法.把过程还给学生,让过程与结果并重。

  六、教学程序:

  本节课的主要流程为:

  预习新知、激趣引入→新知探究、合作交流→巩固练习、强化认识

  (一)、预习新知、激趣引入

  由画布问题引出算术平方根的概念:如果一个正数的平方等于a,即2=a,那么这个正数x就叫做a的算术平方根。这样的设计,其目的是通过表格填空,与正数的平方比较引出算术平方根的概念,沟通二者之间的关系,培养学生的逆向思维能力。

  (二)、新知探究合作交流

  这一环节是整节课的重点环节,引导学生对算术平方根的概念和性质进行了探究,在此基础上掌握a的算术平方根的表示方法及被开方数a的限制。

  (三)、巩固练习、强化认识

  由于学生还不熟算术平方根的表示方法,所以在书写时尽量规范。对算术平方根的`读记练习,让学生通过具体的事例明白各式所()表示意义,亲自操作,进而总结归纳,共享经验,提高学生的语言表达能力。

  在对本节课进行归纳总结时重点围绕以下问题:1、什么是一个非负数的算术平方根?2、正数、0的算术平方根有什么规律?3、怎么样求一个数的算术平方根?正数a的算术平方根怎么表示?

  (四)、板书设计

  6.1算术平方根

  投影课文画布问题及表格

  1、算术平方根的概念例1学生

  2、算术平方根的表示方法例2演板

  3、算术平方根的性质例3

  七、设计说明:

  11、指导思想:

  依据学生已有的基础及教材所处的地位和作用,在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成。

  2、关于教法和学法采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,激发学生兴趣,调节学习情绪,让学生在乘方和算术平方根的性质法则的比较中发现问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,提高教学效率。

  3、关于教学程序的设计

  在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

  ①面向全体学生,启发式与探究式教学。

  ②注重学生参与知识的形成过程,增强学习数学的信心。

  ③让学生在获取知识的同时,掌握方法,灵活运用。

数学说课稿 篇5

  一、 说教材

  本节课讲的是七年级《数学》课改实验教材下册第八章第二节的“消元”问题的应用,它是一节有关二元一次方程组在实际生活中的应用问题,通过“化未知为已知”的转化过程,理解化归的思想,通过将“二元转化为一元”的过程,理解消元的思想,熟练掌握二元一次方程组的解法,并用二元一次方程组解决实际问题。在经历和体验列方程解决实际问题的过程中,体会方程组是刻画现实世界的有效数学模型。在列方程组解决实际问题的过程中,逐步形成解决实际问题的一般性策略。

  二、 说教学目标

  (一) 知识与技能目标

  1、 学生通过探索生活中的实际问题,了解方程个数和未知数个数之间的关系,掌握列方程组解决应用题的方法和步骤。

  2、 学生在探索过程中,体会找等量关系的重要性,理解应用数学知识解决实际问题的方法。

  (二) 过程与方法目标

  1、 经历列一次方程组解应用题的过程,掌握用数学知识解决问题的方法。

  2、 通过自主学习,发展分析归纳解决问题的能力。

  (三) 情感与态度目标

  1、 通过解趣味数学题,感受到数学的趣味性,提高学习数学的兴趣。

  2、 通过解生活中的实际问题,感受到数学知识的广泛应用性。

  三、 说教学重、难点

  教学重点:列方程组解应用题。

  教学难点:找实际问题中的等量关系式。

  四、 说教学设备

  多媒体。

  五、 说教学方法

  本节课主要运用了演示文稿的'形式来启发引导学生在已掌握的解方程组的基础上探究、交流、讨论、总结、归纳,并解决生活中的实际问题,通过感性上升到理性,使学生掌握列方程组解决问题的方法和步骤,理解应用数学知识解决实际问题的方法。

  六、 说教学过程

  本节课的整体思路是“情境创设——讲授新课——练习巩固——归纳小结——作业布置——课后反思”六个基本环节来完成。

  1、 情境创设:

  展示生活中的趣味数学题,让学生试着用所学过的知识解决,以激发学生兴趣,从而导入课题。

  2、 讲授新课:

  (1) 引导学生分析问题,从问题中找出等量关系式,学生在探索过程中,体会找等量关系的重要性,理解应用数学知识解决实际问题的方法。

  (2) 依据等量关系式设未知数,列方程,并加以解决,通过自主学习,发展分析解决问题的能力。

  (3) 回顾解题过程,用框架图作进一步描述,目的让学生掌握列方程组解决实际问题的方法和步骤。

  3、 练习巩固:

  在练习巩固的过程中,使学生对应用数学知识解决实际问题的方法和步骤有更深的理解,并指导学生掌握学习的方法,以达到学会、会学的目的。

  4、 归纳小结

  和学生一起带着问题总结出本节课的收获,在归纳小结的过程中进一步加深对所学知识的理解和巩固,知道解决问题的关键是找等量关系式。

  5、 作业布置

  见课本112页第4、6题,目的在于让学生在课外进一步内化,通过作业批改,及时反馈分析学生学习的掌握情况,分析自我得失,促进教学工作,达到教学相长,共同提高的目的。

  6、 课后说教学反思

数学说课稿 篇6

  “平行四边形的面积”是五年级上册第五单元“多边形的面积的计算”第一小节的内容。它是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。

  虽说学生已经掌握了平行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。但是长方形面积的计算是三年级的时候学的,四年级没有涉及到图形面积的计算,只是认识了平行四边形,如果在不看书的情况下,引入新课教学,学生很难想到用数方格的方法去求面积。所以学生已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对平行四边形面积计算公式的推导造成一定的困难。

  为了有效地突出重点,突破难点,从学生已有的知识水平和认识规律出发,让学生在“复习旧知---大胆猜想---推理判断---动手实践---直观验证”的学习过程中,启发学生用“转化”的思想,动手操作,推导归纳出平行四边形面积计算的公式。充分发挥直观教具教学在知识形成过程中的积极作用, 从而使学生从感性认识上升到理性认识,最终体会到知识的由来,引发学生主动探索问题的积极态度,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高。

  一、复习旧知 铺垫引入

  布卢姆认为,在影响信息的所有变量中,认知前提占百分之五十。长方形面积计算是平行四边形面积计算的生长点,是认知的前提。为架起新旧知识之间的桥梁,我设计了几个问题让学生回忆长方形面积是怎么求的。想一想我们三年级的时候是怎么推导出公式来的。然后直接出示平行四边形的图形,让学生思考平行四边形的面积可以怎么求,并由此导入新课。

  二、主动探索 获取新知

  自主探究是新课程改革的最大亮点,也是课堂教学的难点。 它难在学生在探究之前对结果一无所知,必须先进行猜想,然后才能实验验证。

  1、大胆猜想,展示自己观点。直接向学生呈现问题:展开你的想象猜一猜,平行四边形的面积该怎样计算呢?并以此作为展开教学的依据引起学生探究的欲望,开展下面的探索活动。

  2、推理判断,展示真实思维。我采用了先证伪,再证真的过程。(30+20)×2是不是平行四边形的面积呢?大部分学生能够判断出这样算出的是平行四边形的周长,而不是面积。那么30×20也就是底边乘邻边是不是平行四边形的面积呢?学生根据已有知识经验,平行四边形一拉变成长方形,认为30×20就是平行四边形的面积,通过演示把平行四边形拉成长方形,观察发现拉成的长方形面积变大了,30×20是拉成的.长方形面积,而不是平行四边形的面积。我接着追问:你从哪里看到面积变了,请你上来画一画,指一指。第二种猜想也被排除了。那30×12也就是底乘高可以吗?为什么?这时学生看出了把右边的三角形剪下来补在左边,把平行四边形转化成长方形,底乘高对了。为了突破难点,这时我设计了一个疑问:刚才把平行四边形拉成长方形,底乘邻边算出的不是平行四边形的面积。现在也是变成长方形,底乘高算出平行四边形面积,为什么就对了呢?至此错误得以澄清,正确算法得以掌握,割补转化意识已形成。下面把平行四边形割补转化成长方形已顺理成章了。

  3、动手实践,推导面积公式。 由于前面推理过程,这一环节我完全放手于学生。学生四人一组分工合作,动手剪一剪、拼一拼、把平行四边形转化成长方形,来推导平行四边形的面积计算,为了突破第二个难点我设计了这样的三个思考引导:(1)、拼出的长方形和原来的平行四边形比,面积变大了吗?(2)、拼成的长方形的长和宽与平行四边形的底和高有什么关系?(3)、根据长方形的面积计算公式推导出平行四边形面积计算公式。 接着学生汇报,形成板书,最后介绍字母公式。在这一环节中,学生通过动手操作,体验了图形的平移,转化的数学思想方法,促使空间观念进一步发展。同时也培养了学生语言组织能力和概括能力。

  4、凑数方格,直观验证结论。我尊重教材编写意图:让学生经历数方格的方法体验凑数的过程。在得到平行四边形面积计算公式之后,我让学生用数方格的方法验证平行四边形的面积。通过方格直观验证,平行四边形面积是底×高。

  三、巩固练习 学以致用

  实践是认识的源泉,也是认识的目的和归宿。为了能让学生熟练掌握、灵活运用新知,练习设计由基本练习、判断选择、变式练习、拓展练习、动手实践组成。

  1、基本练习,计算不同形状平行四边形的面积。 (通过练习,巩固新知识,加深对新知识的理解.)

  2、判断选择提升练习,巩固平行四边形面积公式。

  3、变式练习 ,出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,然后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。

  4、拓展练习, 设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高的平行四边形不管它的形状是什么样的,它们的面积总是相等的。

  5、动手实践,让学生测量自带的平行四边形并求出其面积。一方面培养学生解决实际问题的能力和创新思维,另一方面加深学生对平行四边形计算公式的理解, 同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣、有用的数学,从而激发学生的学习兴趣。

  整个习题设计,虽然题量不大,但涵盖了本节课所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了学生思考、发展了学生思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  四、反思交流 拓展延伸

  学生只有学会不断的反思,才能够不断的进步,在课末我组织学生畅谈在这节课中学到了什么?对本节课的学习有什么体会?本节课的问题解决主要采用了什么方法?还有别的方法吗?本节课的学习对你的生活有什么影响?……最后我还引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。

  总之,本节课立足 “基本”,注重“过程”,努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。

数学说课稿 篇7

  一、教材分析。

  本节内容是北师大版数学实验教材第二册第五单元中的第一节内容,在此之前,学生已经学习了运用“凑十法”进行一位数加一位数的口算进位加法,并且在本学期第三单元学会了运用列竖式的方法计算不进位的两位数加法。在本节课中,要让学生在独立思考的基础上,经历与他人交流各自算法的过程,探索并掌握两位数加一位数进位加法的计算方法,并能正确地计算。学生第一次接触到列竖式的方法计算进位加法,了解“满十进一”的计算规律,这对于他们以后学习笔算加法非常重要。因此对竖式的写法,教师要进行必要的指导。基于这些理念,本课设计了以下教学目标:

  (一)、教学目标。

  1、学会正确计算两位数加一位数的进位加法,在竖式计算中,知道“满十进一”的运算规律。

  2、探索适合于自己的计算方法,体会算法的多样化,培养学生思维的灵活性。

  3、通过引导学生自主探索、交流,培养学生综合的学习能力。提高学生探索问题的能力,鼓励学生学会与他人积极合作学习的良好学习品质。

  4、使学生体会数学与现实生活的密切联系。

  (二)、教学重难点。

  教学重点是运用“满十进一”的规律正确计算两位数加一位数的进位加法。教学难点是培养学生表达信息、解决问题的能力。

  二、学生的认知分析:

  一年级学生年龄小、思维活跃、表现欲强,有一定的独立思考、合作交流和解决问题的能力。学生已有两位数加减一位数(不进位、不退位)的知识作基础,对竖式有简单的了解,在前面的学习中已有过练习。在数学学习中,学生对计算有着浓厚的兴趣,这些都是本节课学生学习的前提条件。

  三、教法与学法分析:

  根据一年级学生的年龄、心理、认知规律特点,我采用了灵活多样、新颖有趣的方法手段,以吸引学生的注意力,提高课堂教学效率,这也是我们在“激趣导学”课题研究中大力倡导的。因此本课我采用愉快式教学方法为主,运用大量的活动、讨论、比赛等形式引导学生学习,注重运用引导法、观察法、讨论法等方法进行教学,充分调动学生学习的积极性,让学生在问题情境中主动探究算法,让学生真正成为学习的主人、课堂的主人。根据小学一年级儿童的特点以及本课的特点,把本节课学生的`学法定格为:自主探究法、讨论学习法等。

  四、教学过程分析:

  (1)、创设情境、导入新课。

  在开课之初,我利用小学生好胜心强的心理特点设计了让学生过二关才能到图书馆去看看的情境,使得学生都想当勇敢的闯关者,激发了学生挑战知识的欲望,并为学习新知作好了铺垫,使课堂有了良好的开端。

  (2)自主学习、探究新知。

  在这一部分内容中,首先我利用“图书馆”这一情境图进行新旧知识链接,可以体现数学来源于生活实际这一原则。然后,在探讨算法中,我设置了三个步骤:第一步是自己独立思考算法,给学生充分的自主探究的空间和时间,保证每个学生都能感受探索的乐趣,品尝成功的快乐。第二步是在组内交流调动学生的学习积极性,提高学生的主动参与意识;给学生充分探索、思考、动手、动口、交流的时间和空间,开阔学生的思路,培养学生的合作精神,第三步让学生在全班交流,培养学生表达、交流的能力。在交流中,我特别注重了列竖式的计算方法,学生已经学会列竖式计算两位数不进位加法,有的学生甚至已经有列竖式计算进位加法的知识储备,所以当学生提出可以列竖式计算时,我就先让学生试着列竖式计算,自己讲解计算方法,然后教师再强调“满十进一”的计算法则。(3)畅谈收获、总结学法。

  在小结中,不仅让学生谈自己的收获,而且还评价自己这节课的表现,这样做不仅归纳了本节课的知识要点,提高学生总结归纳知识的能力,更重要的是让学生对学习充满了自信心,找准了自身的闪光点和不足之处,学生相互学习、取长补短、共同提高。

  (4)联系实际、拓展延伸。

  本节课紧紧围绕本次研究主题“激趣、导学”,从学生熟悉的生活情境中引出学习内容,引导学生自主探究算法,培养了学生的各种能力,激发了学生的学习兴趣。使学生体会数学知识来源于生活实际,也可以用数学知识解决实际问题。

数学说课稿 篇8

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  二、教法分析

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导在引导分析时,留出学生的思考空间

  让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N*;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

  通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1-an=d (n≥1)

  同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,

  则据其定义可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  进而归纳出等差数列的通项公式:

  an=a1+(n-1)d

  此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an – an-1=d

  将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)

  当n=1时,(1)也成立,

  所以对一切n∈N*,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n-1个等式。

  对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 , 即an=2n-1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的'运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

  (2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)

  设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结(由学生总结这节课的收获)1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式 an= a1+(n-1) d会知三求一

  3.用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题3.2第2,6 题

  选做题:已知等差数列{an}的首项a1= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  五、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

  §3.2 等差数列

  一、等差数列

  1、定义

  注:“从第二项起”及

  “同一常数”用红色粉笔标注 二、等差数列的通项公式

【数学说课稿】相关文章:

“用数学”数学说课稿03-09

《数学广角》说课稿06-27

数学统计说课稿07-02

数学活动说课稿07-09

《数学乐园》说课稿07-09

数学说课稿03-25

数学广角说课稿11-07

数学说课稿11-05

初中数学的说课稿02-16

小学数学的说课稿01-09