当前位置:育文网>教学文档>说课稿> 人教版数学说课稿

人教版数学说课稿

时间:2022-02-11 20:04:35 说课稿 我要投稿

人教版数学说课稿七篇

  作为一名教师,总不可避免地需要编写说课稿,是说课取得成功的前提。那么应当如何写说课稿呢?下面是小编帮大家整理的人教版数学说课稿7篇,仅供参考,大家一起来看看吧。

人教版数学说课稿七篇

人教版数学说课稿 篇1

  一、教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二、目标分析:

  教学重点、难点

  重点:集合的含义与表示方法。

  难点:表示法的恰当选择。

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性。互异性。无序性;

  (4)会用集合语言表示有关数学对象;

  2. 过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

  (2)让学生归纳整理本节所学知识。

  3. 情感、态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性。

  三、教法分析

  1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。

  2. 教学手段:在教学中使用投影仪来辅助教学。

  四、过程分析

  (一)创设情景,揭示课题

  1、教师首先提出问题:

  (1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流。 与此同时,教师对学生的活动给予评价。

  2.活动:

  (1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学20xx年9月入学的高一学生的全体。

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的'含义。

  一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

  4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流。

  让学生充分发表自己的建解。

  3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

  如果是集合A的元素,就说属于集合A,记作。

  如果不是集合A的元素,就说不属于集合A,记作。

  (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

  (3)让学生完成教材第6页练习第1题。

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。

  6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题。

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题。

  2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

人教版数学说课稿 篇2

  各位老师、评委:大家好﹗

  今天我说课的题目是选自人教版八年级数学第十八章第一节的内容:勾股定理。

  我将从以下这几个方面进行本节课的阐述:教材分析、学情分析、教法、学法指导、教学过程设计以及教学反思。

  下面请大家和我共同走进教材。

  (一)教材分析

  ⒈教材的地位和作用

  《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

  ⒉教学目标

  根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

  知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。

  过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。

  情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。

  3.重点和难点

  勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。本节课主要是对勾股定理的探索和勾股定理的证明。勾股定理的证明方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

  因此本节课的重点:是勾股定理的发现、验证和应用。

  八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课采用的是等积法证明。由于学生之前没有接触过等积法证明,他们对这种证明方法感到很陌生,尤其是觉得推理根据不明确,不象证明,没有教师的启发引领,学生不容易独立想到。

  因此本节课的难点:是用拼图方法、面积法证明勾股定理。

  (二)学情分析

  八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。希望老师预设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。

  (三)说教学方法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程, 针对八年级学生的知识结构和心理特征,本节课采取引导探索法,由浅入深,由特殊到一般地提出问题。以导为主,采用设疑的形式,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。

  (四)说学习方法

  我们常说:“现代的文盲不是不识字的人, 而是没有掌握学习方法的人”, 因而在教学中要特别重视学法的指导, 我采用了如下的学法指导:

  在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  (五)说教学过程

  根据学生的认知规律和学习心理,本节课分六个活动进行学习,为了扩大课堂容量节省时间提高课堂效率,拟采用多媒体教学。

  【活动1】:(多媒体展示)欣赏图片 了解历史

  第一幅图片配上文字说明。

  设计意图:这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。

  第二幅图片为20xx年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。

  设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。

  第三幅图片为介绍古代勾和股。

  设计意图:简单介绍勾股定理的历史,引出勾股定理这一课题。

  学生,读一读和观察。

  【活动2】:探索勾股定理

  首先讲述毕达哥拉斯到朋友家做客的故事。(多媒体展示)

  然后提出两个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。

  {问题一}:在图中你能发现那些基本图形?

  {问题二}:与等腰直角三角形相邻的正方形面积之间有怎样的关系?

  (多媒体展示)探究一

  {问题三}:如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

  {问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?

  学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。

  教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。因此需要教师的引导。

  设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。学生会很积极的投入到探索这个问题的实践中。让学生并且尝试了从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。

  “问题是思维的起点”,通过层层设问,引导学生发现新知。

  (多媒体展示)探究二

  {问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

  将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。关注学生能否用不同的方法得到大正方形的面积。

  学生计算,观察,猜想,语言表达猜想结论。

  教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时又用到数学当中常见的割补法。因此需要教师的引导。

  设计意图:学生通过探究A、B、C三个正方形之间的面积关系,进而发现、猜想勾股定理,并用自己的语言表达出来。这样的设计渗透了从特殊到一般的数学思想。发挥学生的主体作用,培养学生类比迁移能力及探索问题的能力,使学生在相互欣赏,争辩,互助中得到提高。

  (多媒体展示)猜想:

  如果直角三角形两直角边分别为a、b,斜边为c,那么a2 b2=c2。

  即直角三角形两直角边的平方和等于斜边的平方。

  {问题六}:是不是所有的直角三角形都有这样的特点呢?

  【活动3】:证明勾股定理

  师:这就需要我们对一个一般的直角三角形进行证明。到目前为止,对这个命题的'证明方法已有几百种之多。下面我们就来看一看我国数学家赵爽是怎样证明这个命题的。

  {问题七}:请同学们拿出课前准备好的四个全等的直角三角形,记三边分别为a,b,c,然后拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形?

  学生独立思考的基础上以小组为单位,用准备好的四个全等直角三角形动手拼接。学生展示分割,拼接的过程。

  教师深入小组参与活动,倾听学生的交流,帮助指导学生完成拼图活动。并请小组代表到黑板演示拼图过程,鼓励学生敢于发表自己的见解。

  设计意图:通过这些实际操作,调动学生思维积极性,同时使学生对定理的理解更加深刻,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

  {问题八}:它们的面积分别怎样表示?它们有什么关系呢?

  (多媒体展示)拼接图,面积计算

  学生观察,计算,小组讨论。

  在计算过程中,我重点在于引导学生分析图中面积之间的关系,得出结论:大正方形的面积= 4个全等的直角三角形的面积 小正方形的面积,从而运用等积法证明勾股定理。(这样,既突破了难点,让学生感受到用等积法证明勾股定理的奥妙。)

  设计意图:给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。

  师:我们现在通过推理证实了我们的猜想的正确性,经过证明被确认正确的命题叫做定理。猜想与直角三角形的边有关,我国把它称为勾股定理。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我古代数学的骄傲。正因如此,这个图案被选为20xx年在北京召开的国际数学大会的会徽。

  【活动4】:应用勾股定理(多媒体展示)

  (小组选择,采用竞答方式)

  填空

  P的面积= ,

  AB= X=

  BC=

  BC=

  2、求下列图中表示边的未知数x、y、z的值。

  3求下列直角三角形中未知边的长:

  设计意图:首先是几道填空题和勾股定理的直接应用,这几道题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。

  4、求出下列直角三角形中未知边的长度。

  设计意图:规范解题过程。

  5、小明的妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?(我们通过所说的29英寸或74厘米的电视机,是指其屏幕对角线的长度。)

  设计意图:这是一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。

  【活动5】:总结勾股定理(多媒体展示)

  1.这节课你的收获是什么?

  2.理解“勾股定理”应该注意什么问题?

  3.你觉得“勾股定理”有用吗?

  学生谈谈这节课的收获是什么,让学生畅所欲言。

  教师进行补充,总结,为下节课做好铺垫。

  设计意图:通过小结为学生创造交流的空间,调动学生的积极性,即引导学生培养学生从面积的角度理解勾股定理,又从能力,情感,态度等方面关注学生的整体感受。

  【活动6】:布置作业(多媒体展示)

  1.阅读教材第71页的阅读与思考-----《勾股定理的证明》。

  2.收集有关勾股定理的证明方法,下节展示交流。

  3.做一棵奇妙的勾股树(选做)

  设计的意图:给学生留有继续学习的空间和兴趣。

  (六)说教学反思

  本课意在创设愉悦和谐的乐学气氛,始终面向全体学生“以学生的发展为本” 的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间。注重数学思想方法的渗透,整个勾股定理的探索、发现、证明都着意渗透数形结合,又从一般到特殊,从特殊回归到一般的数学思想方法。重视数学史教育,激发学生的爱国情感。数学问题生活化,用数学知识解决生活中的实际问题,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要老师帮助学生去理解、转化,而更多时候需要学生自己去探索、尝试,并在失败中寻找成功的途径。教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。

  板书设计:

  18.1 勾股定理

  勾股定理:

  如果直角三角形两直角边分别为a,b,

  斜边为c,那么a2 b2=c2

人教版数学说课稿 篇3

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学课程标准实验教科书(人教版)一年级下册第88和89页,《找规律》的例1~例3及“做一做。”

  2、教材简析

  “探索规律”是《数学课程标准》中“数与代数”领域内容的一部分,在第一学段和第二学段都规定了这部分内容。传统教材中没有单独编排数字和图形的排列规律,只是在练习中有少量的习题;有关探索规律的内容是新编实验教材新增设的内容之一,也是数学课程教材改革的一个新变化。

  “找规律”在新教材中是一个独立的单元,本节课的3“找规律”作为新单元的第一课,非常重要。本单元是从形象的图形排列规律,颜色交替规律慢慢过渡到抽象的数列规律,如果这节课没有把握好,那么对学生后面的继续学习将会造成阻碍。

  3、教学目标

  知识目标:学生能够通过物品的有序排列,初步认识简单的排列规律,会根据规律知道下一个物体。

  过程与方法:通过“猜一猜”,舞蹈动作等初步感知生活中的规律现象,通过观察主题图,认识规律同时掌握寻找规律的方法,通过涂色与摆学具等活动培养学生的动手能力,激发创新意识。

  情感态度与价值观:通过创设情境,学生能够感知数学与生活的紧密联系,感受数学的美。

  4、教学重点、难点

  通过图形或物体的有序排列,初步认识简单的排列规律,并会知道下一个图形或物体,培养学生的逻辑推理能力和创新意识。

  5、教具、学具准备

  课件、彩笔、涂色卡等。

  二、说教法、学法

  在教学思想上努力体现以学生为学习的主人,教师只是学习的组织者、引导者和合作者,让学生始终参与教学活动中。在教学方法上,采用直观演示、动手操作、引导探究等教学方法,从扶到放,让学生在尝试、探索、练习、实践操作过程中悟出找规律和创造规律的方法。

  在教学设计上,注意重点内容的处理,使学生在主动获取知识的同时,提高学生的观察能力、逻辑推理能力、动手能力和解决问题的能力,培养学生的创新意识。在教学手段上,采用多媒体辅助教学增强了教学的效果。

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,也是本节课中学生学习找规律、创造规律的主要方法。

  三、说教学过程

  (一)创设情境,揭示课题

  1、师故做神秘:你们想知道这袋子里装的是什么吗?这里面装着小圆片,只有两种颜色,一种是红色的,一种是绿色的。下面我们来做个猜一猜小游戏,好不好?(老师第一次拿出的小圆片是什么颜色)

  2、师从袋子里拿出一个红色的小圆片。

  3、老师第二次拿出的小圆片是什么颜色?(绿色)再问第三次呢?再拿一次呢?。。。。。。(共6个)

  4、哇,猜得真准,你们怎么猜得这么准?

  5、原来你们是根据这样的规律猜的。那么后面的排列你们知道了吗?[出示省略号]

  6、小朋友们观察得真仔细。在我们日常生活中,也有像这样按一定的顺序进行有规律的排列,今天我们一起来学习找规律。

  设计意图:兴趣是最好的老师,课初能否激发学生的学习兴趣将直接影响课堂教学效率。让学生猜一猜圆片颜色的游戏,有意识地按规律呈现,让学生在猜测中意会,积累感性经验,从而初步感知规律。这一环节以学生喜爱的游戏形式激发学生参与,同时仅要求猜一猜结果,学生凭直觉做出判断,人人能够参与,有利于面向全体学生。给学生的学习提供了思考、尝试的机会,在猜想中感知到规律的存在,帮助理解知识。

  (二)自主探索,寻找规律

  课件出示主题图:

  1、仔细观察这幅图,你看到了什么?

  2、这些彩旗、灯笼、和花朵是不是乱摆乱放的? 你发现它们有什么规律吗?把你发现的规律悄悄地告诉给你身边的小伙伴好吗?

  3、我们先来看看小旗的规律。

  4、小旗的规律找到,下面看看花儿的规律

  5、再来看看灯笼和小朋友的排列规律

  6、小朋友们,你们知道吗?今年是我们巴马瑶族自治县成立50周年,寿乡的美化绿化真的很不错,看多美的小花园。(课件出示)

  7、新建的广场地板砖快铺完了,大家能帮忙吗?(课件出示)

  设计意图:数学来源于生活,又高于生活,应用于生活,因此,数学教学要紧密联系学生的生活实际。本环节从主学生熟悉的联欢会及县庆美化寿乡的.具体情境引入,让学生体会到现实生活中的有规律的排列原来包含有数学问题,有利于产生学习和探索数学的动机,同时也让学生在解决实际问题中体会到成功的喜悦,并渗透热爱家乡的教育。

  (三)模仿中理解规律

  1、刚才我们应用规律解决了生活中的一些问题,你们能不能按规律来摆图形呢?

  2、好!老师给每个小组准备好了,请大家4人一组把信封里的东西全倒出来,看看老师给你们准备了什么?

  3、小组里的同学商量一下你们想按什么规律摆,商量好了大家才动手摆。

  4、那一组愿意把你们摆的规律拿上来展示给大家看?

  5、你能向大家介绍你是按什么规律摆的吗?

  6、还有哪一组愿意拿上来?(你想让他们说说你们组是按什么规律摆的吗?那你怎样问他们呢?)

  7、还有哪一组想拿上来?(你能象他刚才那样也提出一个问题吗?)谁可以回答这个问题?

  8、指其中一张:我也想提出一个问题可以吗?

  按照这样的规律排列下去,第12个应该是什么图形呢?请你独立想一想(谁来说一说)

  9、到底是什么图形呢?请你拿出桌面上的这张学具卡片,接着画一画,看第12个是什么图形?

  10、画好了吗?谁来说说你画到第12个是什么图形?

  11、拿出你的彩色笔按规律涂一涂。

  设计意图:有效的学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式。找规律内容具活动性和探究性,既具有挑战性,又具有趣味性,“找规律”的内容不能用“对或错”来简单的判断其正确与否,而是要听学生介绍“摆的规律”有无道理,这样就要求学生在自主探索的基础上,充分与同学展开交流活动,注意倾听同学讲的有无道理,联系原有的数学知识结构做出判断,不断地及时地优化自已的数学知识,在合作交流中获得了发展。

  新课标明确指出:“要注意培养学生的问题意识,使学生具有初步的发现问题、提出问题、分析解决问题的能力。”本环节设计注重培养学生提出问题的能力以及渗透猜想、验证的学习方法。

  (四)生活中寻找规律

  1、在我们的生活中,你还发现了哪些东西也是有规律的?(一周的星期一到星期天、街上的红绿灯、人行道的斑马线等)

  2、你真会说,大家表扬他。(啪啪 啪啪啪 啪啪 啪啪啪)

  3、刚才的表扬声,有规律吗?你还能接着往下拍吗?

  4、用有规律的动作跳舞。(《春天在哪里》)

  5、你也能自己创造一些规律吗?(每个小组的同学讨论讨论)

  设计意图:在学生掌握初步的规律之后,从自己的身边着手,寻找生活中的规律现象,让学生在举例和发现中感受到数学的奇妙和无所不在,从而对数学产生亲切感。同时注意培养学生的创造能力,发展学生的思维。

  (五)欣赏规律,感受数学美

  1、课堂小结:生活中还有许多有规律的现象:例如春夏秋冬、白天黑夜、日出日落,时间就这样年复一年、日复一日。小朋友们要珍惜时间,勇于探索生活中的规律,做生活的小主人。

  2、课件播放生活中的一些规律等,让学生进一步感受到生活中处处有数学,感悟规律所带来的数学美。(插入轻音乐)

  (1)白天、黑夜、白天、黑夜。

  (2)一年春、夏、秋、冬依次不断的反复出现。

  (3)太阳总是从东方升起,从西边下山。

  设计意图:让学生进一步感受到生活中处处有数学,感悟规律所带来的数学美,拓展学生的思维空间,让学生对规律美产生无限的遐想,使知识得到延伸。

  四、说板书设计

  板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、指导性、应用性,并应发挥引、导功能,引学生之思,导学生之路。本节课的板书为了突出学生的主体地位,突出学习重点,解决知识难点,整个黑板主要用于展示学生涂画规律的作品。这样安排既便于学生观察,又有利于调动学生学习的积极性,培养学生的创新意识和创造能力,提高教学效率。

人教版数学说课稿 篇4

  背景分析

  三视图这节课对我来说,是第一次接触并讲授它,难免有些生疏,还有理解不深,考虑不周的地方,也请老师们批评指正。本节课是新人教版九年级第二十九章第二节第一课时的内容 ,是在学习空间几何体结构特征和投影之后的情况下教学的 。 三视图是空间几何体的一种表示形式,是立体几何的基础之一。学好三视图有利于培养学生空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣,为高中的后续学习打下基础 .因此我将从投影的角度加深对三视图概念的理解和会画简单几何体的三视图作为本节课的重点.

  教学目标设计

  1.知识技能:能认别简单物体的三视图,了解主视图、俯视图、左视图和三视图的概念。会画简单几何体的三视图。

  2.解决问题:会画实际生活中的简单物体的三视图。

  教学媒体设计

  充分利用多媒体辅助教学的优势。用多媒体对长方体进行正投影得到三视图,直观形象展示得到主、左、俯视图的过程,让学生更直观、形象的感悟三视图的特征。从而达到教学媒体与教学目标,内容的统一。

  教学过程

  一、情境引入:

  二、新课讲授:

  1.讲解:视图的定义——从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看作物体在某一角度的光线下的投影.

  说一说:课本图29.2-2中右侧的视图,分别从哪个角度观察反映出字典的不同形状.

  提问:究竟一个简单的几何体需要几个视图才能全面地反映它们的形状呢?

  讲解:引出三视图的概念,并理解用三视图来表达几何体形状、大小的意义。

  从前向后正投影在正面内得到主视图。

  从左向右正投影在侧面内得到左视图。

  从上向下正投影在水平面内得到俯视图。

  (明确长宽高概念:从正面观察几何体,长是几何体从左到右的距离,宽是几何体从前到后的距离,高是几何体从上到下的距离。)

  思考三视图的画法:对几何体进行正投影得到三视图,将正面、侧面、水平面展开到同一平面。

  讨论:观察得到三种视图的位置关系并讨论得到三种视图大小上的规律。

  位置规定:主视图要在左上边,它的下方应是俯视图,左视图坐落在右边

  三种视图的大小对应关系:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等。

  三、范例学习

  例1、课本P110例题,常见的各种几何体三视图

  四、练习

  五、小结

  1、三视图 主视图——从正面看到的'图

  左视图——从左面看到的图 俯视图——从上面看到的图

  2、画物体的三视图时,要符合如下原则:

  位置:主视图要在左上边,它的下方应是俯视图,左视图坐落在右边

  大小:长对正,高平齐,宽相等.

  六、作业

  我在这节课的教学中,设置的检测问题不到位,在某些问题的讲解上还不够深入。所以在今后要努力提高和完善自身业务素养,尽快成长起来。

  我想不同的学生群体,不同的教学资源设置,不同的任课教师,还遇到不同的问题。有了问题,才会有解决问题的办法,那么,这些解决问题的办法,就要靠全体同仁共同探索。让我们携起手来,共同提高。

人教版数学说课稿 篇5

  一、说教材

  《秒的认识》内容是在学生学会了读、写几时几分,知道1时=60分的基础上学习的,这里将由教师引导学生在具体情境中感悟时间单位“秒”,逐步建立“1秒”的时间观念,并通过观察钟表,得出1分=60秒。这是对时间单位体系的进一步扩充完善,将对学生形成正确的时间观念起到至关重要的作用;同时,“秒”这一时间单位在生活中具有广泛的应用。因此,这部分内容的学习就显得尤为重要。

  二、说目标

  鉴于这一部分知识的重要性及其知识构成的特点,结合学生的实际认知水平,我将本课的教学目标拟定如下:

  1。通过多种实践活动,使学生认识时间单位“秒”,知道1分=60秒,初步建立1秒和若干秒的时间观念,并深入体验1分钟的价值。

  2。初步学会运用观察、直观动作、堆积数据等方式感知并抽象的数学知识,初步感受有限与无限的相对性。

  3。教育学生珍惜时间,从小养成良好的生活、学习习惯。

  时间单位不像长度、质量单位那样容易用具体的物体表现出来,比较抽象,单位之间的进率也比较复杂,这相对于小学生以具体形象思维为主的特点而言具有一定的难度。因此,我将本课的教学重、难点拟定如下:

  初步建立1秒和若干秒的时间观念,知道1分=60秒。

  三、说教学程序

  为了达成以上教学目标,突出重点,突破难点,结合本阶段儿童的认知特点,在教学中,我构想主要运用情境再现、直观演示、实践感知等方法,辅以多媒体电教手段,引导学生在具体情境中,通过观察体验、思考交流、实践校正等活动,经历建立正确的“1秒”和“若干秒”的时间观念的过程。基于以上构想,我将整个教学流程预设为以下几个环节:

  1。创设情境,明确目标

  2。观察体验,建立表象

  3。实践强化,体验价值

  4。巩固应用,归纳总结

  (一)创设情境,明确目标

  首先,引导学生明确“秒”的产生!课始,为学生播放一段好听的动画片音乐——《白龙马》,并告诉学生音乐的时长是1分钟。学生感受1分钟时长,听音乐,观察“进度条”的变化。然后再欣赏一段乐曲——《喜羊羊》,边听边看进度条。音乐不足1分钟便停止了!于是,问学生:从时间的长短来看,你感觉这段乐曲怎么样?不足1分钟的时间,我们该用什么单位记录呢?进而使学生自然认识到时间单位“秒”的产生的必然性,加深了对知识的认识和理解。

  在此基础上,明确学习目标,即重点感知“怎样计量用‘秒’作单位的时间呢?”。进而揭示课题:秒的认识。从而使学生明确了本课学习的重点任务,使学生的思维产生定向发展。

  (二)观察体验,建立表象

  本步骤预设要完成三个任务:认识1秒、认识几秒、归纳秒与分的关系。

  1。认识“1秒”

  在这一步骤中,为了强化学生对“1秒”时间单位的感知,我设置了三个层次,引领学生感知体验。

  (1)感知“1秒”

  揭示课题“秒的认识”之后,作为教师引导发言:认识秒还要用到计量时间的工具——钟表或电子表。

  【1】第一,认识“钟面”计量秒的方法。教师提问:在钟面上,怎样计量用秒作单位的时间呢?学生们自然从颜色、长短、快慢等方面找到了“秒针”。接着借助学生的已知生活经验,引导学生看一看、说一说、动一动,认识到“秒针走1个小格的时间就是1秒。”此外,引导学生配合语言描述和肢体动作加深对“1秒”时长的体验感知。

  【2】第二,认识电子表计量秒的方法。教师出示电子表,如9:20(冒号在不断闪烁)。向学生提问:在这种电子表中既没有秒针,有没有滴答的声音,那怎样计量用秒作单位的时间?学生自然观察到:冒号每闪烁一下的时间就是1秒。通过学生的语言描述,并配合动作深入感知了电子表上的1秒。紧接着,我又出示一种这样的电子表,如9:25:34(秒在不断变化)。提问:在这种电子表中,冒号不再闪烁,那用什么来计量用秒作单位的时间呢?学生们通过观察发现:最后一部分数字每变化一次就是1秒。于是引导学生随着电子表的数字的变化,有节奏地数数,深入感知1秒1秒地变化。

  通过以上两个层次的深入感知,加之多角度多方式的表述,“1秒”的时间观念在孩子的头脑中已初步形成,达到了预定的教学目标。

  (2)体验1秒的价值

  为了丰富学生对1秒的认识,在这一环节中,我设置了一下活动;

  【1】在1秒的时间里你能在做什么?谈一谈你的感受。

  【2】接下来,教师通过课件展示1秒钟内现代机械工具做的事情,突出数据的直观刺激,强化1秒的巨大价值。

  在这一活动的基础上,教师适时小结:

  1秒虽短,但是如果充分利用这1秒,它就会产生意想不到的价值。

  【3】紧接着,通过课件展示数据,对比刘翔与奥利弗的110米栏成绩,通过具体的数据对比,使学生认识到1秒虽短,却往往能决定一件事情的成败,进而引发学生产生争分夺秒,珍惜时间的共鸣。

  通过以上活动,力求使学生对1秒的感知更加丰厚,在获取知识的同时,进行一定的人文教育。

  2。认识几秒

  为了加深对时间单位“秒”的认识与运用,在认识“1秒”以后,引导学生认识5秒、10秒、20秒、直到60秒,在夯实时间单位感知的基础上,感知分与秒的进率关系。

  因此,在这一环节中,设置了如下三个活动:

  (1)感知5秒

  【1】边看变数。

  【2】静默数一数。

  【3】自主回答:秒针从( )走到( )是5秒。

  (2)采用上述方法,继续感知10秒、15秒、20秒。

  (3)游戏:估一估

  要求:闭上眼睛,老师说“开始”,到宣布“停”,经过的时间大约是多少秒?分别估测10秒——15秒——20秒——30秒——60秒。

  3。感知1分钟与1秒的`关系

  设置的活动如下:

  (1)分组观察:秒针走一圈的同时,分针走多少?

  (2)引导学生交流讨论,归结出:1分=60秒。

  这一活动的安排,旨在通过看、数、估等活动检测并进一步校正学生对“几秒”时长的感知,促进正确时间观念的形成。同时,直观地归纳出了时间单位间的进率关系:1分=60秒,促进了学生对时间单位知识架构进一步完善。

  (三)实践强化,体验价值

  为了深入感知1分钟,也就是60秒的时长及其价值,继续安排了下面的教学活动:感受1分钟。共设置三层次的活动:

  1。静候1分钟,谈感受。

  2。活动1分钟:分组在一分钟内写字、算题、数数等。

  3。对比两个1分钟的感受。

  通过以上的活动,观察、静候、活动、对比这一系列的实践活动与思维活动,使学生在感知知识的同时,切身感受到时间的意义,领悟人生的道理,也就是教师在小结中提到的:时间有限,价值无限。

  (四)巩固应用,归纳总结

  在新知学习之后,为了巩固学生对知识的理解与应用,设计了练习,即以游戏闯关寻宝的形式完成练习。

  1。填上合适的时间单位。

  2。改数学日记。

  3。知识拓展:“一眨眼”的时间。

  最后,引导学生寻得珍宝,那就是时间。教师随即揭示一句时间名言送给学生,并一起诵读时间名言:一寸光阴一寸金,寸金难买寸光阴!并以此完结本课知识的学习进程。

人教版数学说课稿 篇6

  一、教材分析

  说课内容:

  《整式的乘除与因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

  本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

  教学目标和要求:

  由课标要求以及学生的情况我将三维目标定义为以下三点:

  知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

  过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

  情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

  教学的重点与难点:

  根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的`应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

  二、教法与学法

  (1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

  (2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  (3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

  三、教学过程

  教师活动学生活动设计意图

  一、创设情景,推导公式

  计算

  1、想一想(电脑演示)

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)

  ⑴、分别写出每块实验田的面积;

  ⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

  2、算一算

  ①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)

  3、做一做

  你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

  二、自主探究,合作交流

  板书公式:

  ①②1、问题:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗

人教版数学说课稿 篇7

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。②等差数列的通项公式的推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情教法分析:

  对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的'教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导:

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ......

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ......

  通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。强调:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” )。

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

【人教版数学说课稿】相关文章:

小学数学人教版说课稿01-09

人教版小学数学说课稿01-13

【精选】人教版数学说课稿3篇01-26

【精选】人教版数学说课稿四篇01-21

【精选】人教版数学说课稿三篇01-23

【精选】人教版数学说课稿小学三篇01-15

精选人教版数学说课稿四篇01-18

【实用】人教版数学说课稿三篇01-22

人教版数学说课稿小学6篇01-22

人教版数学说课稿合集六篇01-18