当前位置:育文网>教学文档>说课稿> 分数的基本性质说课稿

分数的基本性质说课稿

时间:2022-02-21 04:17:20 说课稿 我要投稿

分数的基本性质说课稿范文锦集八篇

  作为一名专为他人授业解惑的人民教师,时常需要用到说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么问题来了,说课稿应该怎么写?以下是小编整理的分数的基本性质说课稿8篇,仅供参考,希望能够帮助到大家。

分数的基本性质说课稿范文锦集八篇

分数的基本性质说课稿 篇1

  一、说教学理念

  1、以学生发展为本,着力强化主体意识。

  2 、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。

  3、 致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法。

  4、联系生活实际、感受数学与现实世界的紧密联系,体验数学的应用价值。

  二、说教材

  《分数的基本性质》一课是九年义务教育六年制小学数学第九册第四单元的内容。它是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据教材内容和学生的认知规律,将本课的教学目标拟定如下:

  1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。

  2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法。

  3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

  本课的教学重点:在通过观察、比较后抽象、概括出分数的基本性质,并会简单应用。

  本课的教学难点:理解和掌握分数的基本性质,沟通与商不变的规律之间的联系与区别。

  教学准备有:多媒体课件、每位学生二张长方形纸、两张圆形纸。

  三、说教法

  本课的教学力求改变过去重知识,轻能力;重结果,轻过程;重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务的思想。根据学生的学情,以自主探究为主线,以发展创新为宗旨,为学生提供学习的材料,采用引导探究、引导合作、引导发现、组织讨论、组织练习等教法。精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学服务的目的。

  苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要尤其强烈。因此,当学生对二分之一等于四分之二等于六分之三产生疑问并急于了解其中奥秘时,没有把现成的知识直接传授给学生,令他们得到暂时的满足,而是充分相信学生的认知潜能。在新知教学环节中,我主要采用引导探究、引导体验、组织讨论等方法最大限度地给予学生自主探索的时间和空间,把主动权交给学生让学生以自己的方式自由、开放地去探索、发现、创造分数的基本性质,让他们在尝试中发现、讨论中明理、合作中成功、质疑中发展,体验知识的形成过程,使学生的个性得到发展,创造欲得到满足。

  现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。学生在写出一组大小相等的分数后我让学生用自己喜欢的方法加以验证,这一验证的过程使学生在动脑、动口、动手,多种感官配合下,把静态的知识转化为动态的求知过程。

  新课程标准指出:学生的数学学习应当是一个主动和富有个性的过程。因此在例题教学环节,我采用自主探究的学法,让学生自主进行学习,从而学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。

  在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。

  四、说学法

  新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学习方法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。

  1、学生在探究分数的基本性质时,学生主要采用自主发现法、操作体验法、合作交流法,学生在得出二分之一等于四分之二等于六分之三后,小组合作找出几组像这样大小相等的分数,在这一过程中学生为了能写出大小相等的分数,必然会产生对那组等式进行观察的愿望,从中有所发现。之后学生通过同伴间的交流,运用折纸、等多种方法证明自己写出的那组分数大小相等,他们在尝试中发现,在实践中体验。最后学生交流在写数过程中的发现,最后在讨论中明理,揭示出分数的基本性质。

  2、在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小不同的分数,并尝试完成做一做,达到检验自学的目的。

  当然,由于学生所处的文化环境、家庭背景和自身的思维方式的不同,不同的学生所采用的学习方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。

  五、 说教学程序

  依据新的教学理念及学生的认知特点,将本课的教学设计为以下四个过程:即谈话导入、提出问题;自主探索、寻找规律;运用规律、巩固深化;反思评价,完善认知。

  第一、谈话导入、提出问题:

  前几节课我们学习了分数的意义以及数与除法的关系等内容,我想大家一定学的非常好对吗?先来考考大家!

  设计意图:这的样设计,直接扣入主题,体现了数学的简洁之美,迅速的点燃孩子们求知欲望的火花,从而为主动探究新知聚集动力。

  第二、自主探索,寻找规律。

  此过程共设计了以下三个环节:

  第一个环节:建立几组相等的分数,提供探究的数据。

  设计意图:这样的设计,不仅复习了已有的`知识,而且调动了孩子学习的积极性,用数形结合的思想理解分数的大小,从而很直观上建立起三组分子和分母各不相同而分数的大小确相等的数学。再通过学习已有的学习经验和手中的学具,让学生接着举出几组分数大小相等的分数,这样师生共同呈现的多组分数,为下面研究问题提供了大量的数据。

  第二个环节:小组合作,探究规律。

  设计意图:“疑是思之始,学之端”。这些分子和分母各不相同而分数大小确相同的分数之间一定存在着一些千丝万缕的联系,我们需要进一步的研究。这样的设计,最大限度的调动了孩子的学习积极性,使学生成为课堂学习的主人,让他们在独立自主,合作交流的基础上,对自己的所疑之处,提出合理的说明和解释,通过师生共同的梳理,把静态的知识转化为动态的求知程,从而得出结论。

  第三个环节:沟通联系,揭示规律。

  设计意图:联系分数与除法的关系,结合商不变的性质,进一步说明分数基本性质。这样的设计,从实践的观察和发现到理论的证明,层层深入的证明了我们发现规律的合理性,从而建立起“商不变的性质”与“分数的基本性质”之间的内在联系,新的学习活动与原有的认知结构相互作用,引起了认知结构的重新构建,这是从理论上对规律的证明,在大量的实践材料和理论证明中完成了“分数的基本性质”这一数学模型的构建过程。

  第三、运用规律、巩固深化、拓展思维

  设计意图:这一环节是进一步理解、深化新知识的重要环节,在设计练习题时,要体现“让不同的学生在数学上有不同的发展”这一新课程的理念。主要目的是培养学生的自主解题能力,在面对全体学生的基本上有所提高,注意对知识的巩固。立足于基本练习,注意练习与学生生活实际的联系,让学生学有价值的数学。通过综合练习培养学生的思维,也渗透“极限”和“归纳”的数学思想方法。

  第四、反思评价,完善认知

  你有什么收获?还有什么不明白的?你认为自己在今天课堂上的表现怎样?你帮助了谁或谁帮助了你?

  设计意图:这样的设计,不但让学生谈知识技能方面的收获,还着重让学生谈了学习的方法、情感态度方面的收获,再一次激起良好的情绪体验。

分数的基本性质说课稿 篇2

  一、说教学内容的创新处理

  《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。

  2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  4.问--ww"1/2=2/4=/4/8"中,你发现什么?

  5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学模式

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)

  这一情境的'设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、4/8这些分数有什么关系?

  (学生会说这三个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8(2)3/8=12/2(3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/51/64/94/612/16

  3/42/320/256/368/18

  三、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

分数的基本性质说课稿 篇3

  一、说教学理念

  1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容

  《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  3、教学目标:

  (1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

  教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

  1、实际操作法

  指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、直观演示法

  先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  3、启发式教学法

  运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  四、说学法

  1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

  五、说教学过程

  (一)、新知铺垫

  (二)、新知导入

  (三)、新知探究

  (四)、新知探究

  (五)、新知训练

  (六)、新知应用

  (七)、新知强化

  (八)、新知小结

  1、新知铺垫和导入

  上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的.分子和分母都不相等,这其中有什么规律呢?继而揭示课题。

  (设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。

  2、新知探究

  (1)、动手操作、形象感知

  首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。

  (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

  (2)、观察比较,探究规律

  首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。

  (设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。

  3、新知训练

  在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。

分数的基本性质说课稿 篇4

  本节我想结合我校申报的市级课题《创设数学问题情境激发学生学习兴趣》和本人负责的市级课题《网络环境下促进自主学习的教学设计的研究》来谈谈这节课的教学设想,以及结合本节课的教学情况谈几点反思。

  探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。

  1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。

  2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。

  在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。

  3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。

  4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。

  5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练习有效地融合在一起,这也是一个很值得我个人反思的地方

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的.时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

  《分数的基本性质》教学设计

  江西省赣州市大公路第二小学李毅云

  一、教学目标

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教材分析

  分数的基本性质是约分和通分的基础,而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。探索分数大小不变的规律,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。

  教学重点:理解掌握分数的基本性质。

  教学难点:归纳性质

  教学关键:利用分数意义理解性质

  教学方法:直观教学法,故事情境激励法

  三、教学设想

  (一)、创设故事情境,激发学生学习兴趣,并揭示课题。

  上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

  (二)、利用学具,小组合作探究规律。

  当激发起学生的好奇心时,让学生四人小组合作利用手中的学具,结合分数的意义来探究其中的规律。在找到规律后让学生想一想,根据分数与除法的关系,以及整数除法中商不变的规律让学生再说说分数的基本性质,来加深学生对分数的基本性质的理解。在学生已经理解了分数的基本性质后,教师又让学生回到故事中去,让学生试想如果还有一只小猴子,它想要四块,猴王该怎样分呢?既达到了练习的目的,又首尾照应,调动学生的积极性。

  (三)、设计有层次的练习,以达到巩固新知的目的。

  四、教学设计

  (一)创设情境,引起学生参与兴趣

  1、猴王变戏法(学生模仿复习):

  除法式子变形

  分数与除法变形

  2、教师出示三只可爱的小猴图片,奖励听故事:

  有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。

  同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)

  3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?

  (二)探究新知

  1、动手操作、形象感知

  请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。

  2、观察比较、探究规律

  (1)通过动手操作,谁能说一说图中阴影部分用分数表示各是几分之几?

  (2)你认为它们谁大?请到展示台上一边演示一边讲一讲。

  (3)既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

  (4)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。

  要求:有序观察认真交流

  (5)学生汇报讨论情况。

  (6)启发点拨。

  A.通过从左到右的观察、比较、分析,你发现了什么?

  B.分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?请举例说明。板书:(零除外)

  C.你认为这句话中哪些词语比较重要?(都、相同的数、零除外)

  (7)把和化成分母是12而大小不变的分数。

  A.思考:要把和化成分母是12而大小不变的分数,分子怎么变?变化的依据是什么?

  B.让学生讨论后独立解答。

  (8)讨论:猴王运用什么规律来分饼的?如果小猴子要4块,猴王怎么分才公平呢?

  (9)质疑。让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师质答疑。

  (三)随堂练习

  1.P109.1.

  2.判断对错,并说明理由。

  3、

  (四)小结

  同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

  五、让学生拿出课前发的分数纸,要求学生看清手中的分数与1/2相等的,报出自己分数后离场,与2/3相等的再离场与3/4相等的。

分数的基本性质说课稿 篇5

  我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。

  本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。

  本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。

  以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。

  根据以上分析。我认为本节课的教学目标有以下几点:

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。

  3、培养学生在合作中逐步形成评价与反思的意识。

  4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

  我认为本节课的教学重点是:理解、掌握分数的基本性质。

  难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。

  下面说说我的教学过程:

  我将本课的教学设计以下几个环节,

  一、设疑激趣,引入新课

  教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。

  首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的'饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

  这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

  二、自主探索,学习新知

  新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

  1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

  2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

  学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)

  3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

  师:谁能用一句话把这个变化规律叙述出来呢?

  生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。

  师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

  5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

  结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

  6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。

  教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

  三、分层练习,巩固深化

  只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

  1、涂一涂练习14,第1、7题。

  因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

  2、说一说完成练习14,第8题

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  3、想一想:第5、9、10题(选择一题做为作业)

  在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

  四、畅谈收获,小结全课

  让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

  整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

分数的基本性质说课稿 篇6

  沈老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。

  1.教材简析

  《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的'基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

  2、教材处理

  (1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

  (2)把总结式教学为学生自我发现、自我总结的探究性学习。

  (3)以教师的主导地位转化为学生为主体的学生探究性学习。

  3、教学过程

  这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

  在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。

  沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

分数的基本性质说课稿 篇7

  把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。

  分数的基本性质

  1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。

  2.培养学生观察、分析、思考和抽象、概括的能力。

  3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。

  教学过程

  一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

  二、导入新课例

  1.用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

  (2)观察 例2.比较 的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质

  1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。

  2、为什么要零除外?

  3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

  (1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的`基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在( )里填上适当的数。

  4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。

  六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

  分数的基本性质(说课稿)

  理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。

  分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

  学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。

  分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。

  在教学中,采用小组合作学习的办法,通过给3张纸涂色、折叠、观察、探索进行规律性的总结。在进行小组汇报时,教师揭示了知识间的联系,鼓励学生用不同的理解方法、不同角度进行汇报分数基本性质的可行性,为学生的思维留下了创造空间。在学生总结规律后,为了加深对分数的性质的理解,还可以让同学举一些符合规律的例子进行说明。教学实践中,要注重培养学生揭示知识间的联系、探索规律、总结规律的能力。

分数的基本性质说课稿 篇8

  一、教材

  1、教学内容:这是义务教育课程标准实验教科书数学人教版五年级下册第四单元P75的内容《分数的基本性质》。

  2、教材与前后知识间的联系:《分数的基本性质》是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。同时又是后面学习约分和通分的理论依据,而约分、通分又是分数四则运算的重要基础,因此这部分内容不仅在单元中具有承前启后的作用,对学生的后继学习也有重要影响。

  3、教材重点:探究分数的基本性质的过程。理解分数的基本性质,能运用分数的基本性质。

  难点:自主探究出分数的基本性质。

  4、知识与技能目标:理解和掌握分数的基本性质,经历探索分数基本性质的过程,培养学生观察、比较、抽象、概括、类推及动手实践能力,进一步发展学生的思维。

  过程与方法目标:是学生经历观察、操作、讨论中,以自主探究、合作分享的教学方式,让学生在交流中进一步完善对分数基本性质的理解。

  情感态度,价值观目标:让学生在主动探索新知的过程中获得成功的体验,体验数学学习的乐趣。

  二、说教学理念:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变学数学为做数学。

  3、改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法

  三、说教法

  主要采用创设情境,引导探究,引导自学,合作探索相结合等教法。

  四、说学法

  学生主要的学习方法是自主发现、操作体验、合作交流,有顺序的观察题、对比分析、概括总结。

  五、说教学过程

  我将创设情境,动手体验、自主探索的教学方式,指导学生运用“操作――发现法”、“观察、归纳”法进行探究。为此,我设计了四个教学环节:

  第一个环节是创设故事情境,激发学生兴趣《分数的基本性质》说课稿《分数的基本性质》说课稿。我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。因此我设计了一个妈妈给三个儿子分苹果的故事。妈妈分别给三个儿子分得苹果的1/2、2/4、4/8,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,看谁分的多,妈妈是不是偏心。这样一来,学生学习数学的兴趣就会提高,学习的积极性也调动起来了。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的苹果实际上是一样多的,只不过是平均分的份数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二个环节是动手体验,形象感知。分数的基本性质,是以分数的大小相等这一概念为基础的。因此我让学生用三张同样大小的.长方形纸代替苹果分别折出1/2、2/4、4/8,并用彩色笔涂上颜色。这样既帮助学生复习了分数的意义,又为学习新知识作了准备。接着让学生观察比较涂色部分的大小,再请学生交流,汇报实验过程及结果,使1/2=2/4=4/8这个结论让学生自己“做出来”,而不是老师讲出来。这充分体现以学生为主体,自主探索的教学理念。

  这种教学方式能有效地改变学生原有的一个整数对应一个大小的习惯性思维,初步体会到分数“形变值不变”的独特之处,提高学生的认知能力。

  第三个环节是深入探究,得出规律。这一节环节我提出问题让学生讨论:既然这三个分数大小相等,那这三个分子、分母都不相同的分数之间藏着什么秘密呢?你们能找出它们分子分母各自按照什么规律变化吗?首先,让学生自己观察,把自己的发现在小组内讨论交流,引导学生观察:从左往右得出什么规律,反过来从右往左又得出什么规律。然后请学生再举几个这样的例子,进行交流,有了这些较为丰富的感性认识,再总结出规律。最后学生们会概括得出:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(老师板书)预计学生不会把相同的数中的0除外,因此我会问同时乘和除以0也可以吗?让学生思考并得出0不能作为分母不能作为除数,所以0要除外,最后让学生重新完整的叙述一遍,老师揭示课题。最后提出问题,我们刚才是借助图联系分数的意义来说明分数的基本性质,这个性质能不能根据分数与除法的关系和商不变的性质来说明呢?启发学生用商不变的性质来说明分数的基本性质,沟通新旧知识的联系,从而培养了学生迁移能力。最后师生共同总结本节课的学习方法。

  最后一个环节是巩固新知,拓展延伸。学以致用是探究学习的又一个基本特征《分数的基本性质》说课稿教学反思。因此我精心设计了练习题。首先是题型变化丰富

  练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:分数的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

【分数的基本性质说课稿】相关文章:

分数基本性质说课稿07-06

分数的基本性质说课稿11-11

《分数基本性质》说课稿02-16

分数的基本性质说课稿11-07

《分数的基本性质》说课稿06-09

关于《分数的基本性质》说课稿01-06

分数的基本性质说课稿优秀03-31

分数基本性质说课稿15篇07-06

分数的基本性质说课稿精选15篇07-27

分数的基本性质说课稿15篇11-14