关于高中数学说课稿模板汇编7篇
作为一名为他人授业解惑的教育工作者,常常要写一份优秀的说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?下面是小编为大家整理的高中数学说课稿7篇,仅供参考,大家一起来看看吧。
高中数学说课稿 篇1
一、 说教材
(一)教材的地位和作用
本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线。通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别。通过学习作图、观察与探究,会发现三角形的三条高所在的直线、三条角平分线、三条中线都各自交于一点,这为以后三角形的内心、重心等知识的学习打下一定的基础,另外,本节内容也是日后学习等腰三角形等特殊三角形的垫脚石。故学好本节内容是十分必要的。因此,对三角的高、中线、角平分线定义的理解及画法的掌握是本节教学的重点,而三角形的高由于三角形的形状改变而使其位置呈现多样性,学生难以掌握,故在各类三角形中作出它们是本课的难点。
(二)教学目标分析
本节课的教学设计力图体现“尊重学生,注重发展”的教学理念,着重培养和发展学生基本作图能力、语言表达能力、观察能力等,根据这一目的确定本节教学目标为:
1、理解三角形的高、中线、角平分线的概念
2、能正确作出一个三角形的高、中线、角平分线
3、通过观察、探究、画一画、折一折与描述等数学活动,感受数学语言的准确性,提高观察能力,语言表达能力,发展推理能力。
重点:掌握三角形的高、中线、角平分线的概念,并能在具体三角形中画出它们
难点:在各种三角形中作出它们的高
二、 说教法
1、情境创设法 :利用张师傅如何将一块三角形的地分成面积相等的两块三角形地创设问题情境,并引导学生去简单分析思路,目的使数学能密切联系实际体现知识的形成和应用过程。以实际问题为出发点和归宿,更能贴近学生生活,以激发学生对学习本节内容的求知欲,培养他们运用所学知识解决问题的能力。
2、加强学生学习的主动性与探究性 在课堂中要充分调动学生自主学习的潜能,让他们自由探究中发现,从而发展他们的创新能力,让他们感受到成功的喜悦。学生在画一画、折一折、何三个探究活动中体验数学知识的形成过程。当学生在探究过程中遇到困难时,才取消组建的交流与合作,充分发挥学生的团队作用,以更好地激发学生的积极思维,得到更大的收获。
3、运用多媒体等作为教辅工具,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点。
三、说学法
1、本节重点是三角形的三种重要线段,难点是对三角形的角平分线、中线、高的准确理解、作图与正确运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,从大量的活动入手获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。
2、小组讨论、合作探究,既可让学生互相启发,互相促进,积极交流,表达思想又可促进数学思考,扩大和加深对问题的认识,本节课中我让学生以小组进行探究,归纳图形特征,做到仔细观察,大胆探索,勇于发现,抽象概括。让学生通过探索活动来发现结论,经历知识的“再发现”过程,从而改变学生学习的方式,发展创新思维能力。
四、说教学过程:
1、创设问题情境,引出新知: 从生活实例引出新问题,调动学生学习积极性
2、预习检查:以题组的形势
考点1:三角形的高
1.如图7.1.2-1,在△ABC中,BC边上的高是________;在△AFC中,CF边上的高是________;在△ABE中,AB边上的高是_________.
2.如图7.1.2-2,△ABC的三条高AD、BE、CF相交于点H,则△ABH的三条高是_______,这三条高交于________.BD是△________、△________、△________的高.
3.如图7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,则下面说话中错误的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2《三角形的高、中线、角平分线》说课稿
图7.1.2-1 图7.1.2-2 图7.1.2-3
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
5.三角形的三条高的交点一定在( )
A.三角形内部 B.三角形的外部 C.三角形的.内部或外部 D.以上答案都不对
考点2:三角形的中线与角平分线
6.如图7.1.2-5所示:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°.
(2)AE平分∠BAC,交BC于E点,则AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中线、角平分线》说课稿∠________.
(3)若AF=FC,则△ABC的中线是________,S△ABF=________.
(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.
图7.1.2-5 图7.1.2-6 图7.1.2-7
7.如图7.1.2-6,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=______度.
8.如图7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中线、角平分线》说课稿∠ABC,则AD是△ABC的________线,BN是△ABC的________,
ND是△BNC的________线.
9.下列判断中,正确的个数为( )
(1)D是△ABC中BC边上的一个点,且BD=CD,则AD是△ABC的中线
(2)D是△ABC中BC边上的一个点,且∠ADC=90°,则AD是△ABC的高
(3)D是△ABC中BC边上的一个点,且∠BAD=7.1.2《三角形的高、中线、角平分线》说课稿∠BAC,则AD是△ABC的角平分线
(4)三角形的中线、高、角平分线都是线段
A.1 B.2 C.3 D.4
3、探究活动1:探究三角形的高,师提出问题,生独立解答,教师关注学生对高和边的对应关系是否明确,并结合图形引出三角形高的定义,并且利用图形,让生用语言描述,师加以修正,目的发展学生的观察力与语言表述能力。在此基础上让学生明确三角形的高是一条线段。为了培养学生的绘图能力,让小组之间合作完成锐角三角形、直角三角形、钝角三角形各边上的高。小组交流,归纳三角形高的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。
在活动中,师应重点关注:
①学生能否多方位的加以探究
②学生能否用流利的语言描述自己的发现
③学生能否对不同的观点进行质疑,感受数学结论的正确性。之后设计的是巩固性练习,通过学生练习,对三角形高的的有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性。
3、探究活动2 : 探究三角形的中线:学生在画一画中体会三角形中线的定义,培养学生动脑、动手能力,语言表达能力。
4、探究活动3:探究三角形的角平分线。首先让学生折一折,在动手操作中体会折痕是否平分三角形的内角,之后分小组折叠锐角三角形、直角三角形、钝角三角形的角平分线,小组交流,归纳三角形角平分线的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。从而很好的培养了学生的动手操作和探究能力。
5、练习巩固,深化拓展
先以抢答形式解决问题1、问题2,让学生利用所学知识,进一步巩固三角形的高、中线、角平分线的有关概念,提高学生独立解决问题的能力。拓展练习是一个综合性题目,一方面引导学生从复杂图形中抽取基本图形,从而加强学生对概念的掌握,进一步发展学生的思维,拓展能力,运用以增强直观性。
6、感悟与收获:进一步提升学生对知识点理解。
7、作业布置:让学生运用数学知识解决生活实例,是让学生感受数学和生活的联系及数学在生活中的重要性,充分体现数学于生活又还原于生活。
高中数学说课稿 篇2
一、说教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、 教学目标
(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、 集合的符号记法,为本节重点做好铺垫。
6、 从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的`含义。
7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
八、板书设计
高中数学说课稿 篇3
各位老师:
大家好!
我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的.试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1.基本事件的特点
2.古典概型的特点
3.古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
高中数学说课稿 篇4
各位同仁,各位专家:
我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册 第1。2节
先对教材进行分析
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
教学重点:任意角三角函数的定义
教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:
学生已经掌握的内容,学生学习能力
1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2。我们南山区经过多年的.初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
知识目标:
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
能力目标:
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性。
教学过程分析
总体来说, 由旧及新,由易及难,
逐步加强,逐步推进
先由初中的直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排
引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
SinA=对边/斜边=BC/AB
cosA=对边/斜边=AC/AB
tanA=对边/斜边=BC/AC
逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。
我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?
引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义
例1已知角A 的终边经过P(2,—3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值
结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数
例题变式2, 已知角A 的终边经过P(—2a,—3a)( a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制A的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业P16 1,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作P23 1(2),5(2),6(2)(4) 选作P23 3,4
板书设计(见PPT)
高中数学说课稿 篇5
1、对教材地位与作用的认识
在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”!
2、教学目标的确定及依据
(大纲的要求)通过本小节的学习,要使学生了解解析几何的基本思想,了解用坐标法研究几何问题的初步知识和观点,理解曲线的方程和方程的曲线的意义,初步掌握求曲线的方程的方法.所以第一课我在教学目标上是这样设定的:
1).了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;
2).在形成概念的过程中,培养分析、抽象和概括等思维能力;
3)会证明已知曲线的方程。
本节课的教学目标定在“初步掌握”的水平上,但“初步”绝不等同于“含糊”,它反应在学生的学习行为上,即要求学生能答出曲线与方程间必须满足的两个关系,才能称作“方程的曲线”和“曲线的方程”,两者缺一不可,并能借助实例进一步明确这二者的区别。知识的学习与能力的培养是同步的,在具体操作上结合图形分析与反例,来辨析“两个关系”之间的区别,从认识特例到归纳出曲线的方程和方程的曲线一般概念,因而在形成概念的过程中,培养学生分析、抽象、概括的思维能力.会证明已知曲线的方程就能更进一步的理解曲线和方程概念的含义并为下节课求曲线的方程打基础.
3、如何突破重难点
本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题.
本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延。
4、对教学过程的设计
今天要讲的'“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。在课时安排上分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”和“方程与曲线”的概念及其关系;第二课时讲解求曲线的方程一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识。如果以为学生不真正领悟曲线和方程得关系照样能求出方程,照样能计算某些难题,因而可以忽视这个基本概念得教学,这不能不说是一种“舍本逐末”得偏见。
在教材中,曲线和方程这一概念是随着知识的讲授而不断深化,逐步为学生所理解,因而教材中从直线开始,多次,重复地阐述,这说明其重要性.同时也说明理解它,掌握它确实需要一个过程.数学本身是很抽象,把数学和实际问题相结合才能激发学生的学习兴趣,真正达到素质教育的要求。根据以上考虑,确定了这节课教学过程的基本线索是:实际问题引入,提出课题→运用反例,揭示内涵→讨论归纳,得出定义→集合表述,强化理解→知识应用,反复辨析。
教材的编写也往往体现着教法.,例如,本节一开头说“我们研究过直线的各种方程,讨论了直线和二元一次方程的关系。”学生已经有了用方程(有时用函数式的形式出现)表示曲线的感性认识,在本节教学中充分发挥这些感性认识的作用。从人造地球卫星运行的轨道等生动形象的实际问题引入,引起学生的兴趣和好奇心以及对数学的应用有了更高的认识,更激发他们进一步学好数学的决心。(具体……)提出课题。运用学生熟知的知识,1)求线段AB的垂直平分线方程和2)作出方程y=x2的图象作为引例,从曲线到方程,从方程到曲线两方面入手分析了曲线上的点和方程的解之间的关系,为形成曲线和方程的概念提供了实际模型,但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制了学生学习的主动性和积极性,接着用反例来突破难点。通过反例1)直线去掉第三象限部分,则方程y=x的解为坐标的点不都在曲线上,以及2)改方程为,那么曲线上就混有不满足方程的点坐标就此揭示“两者缺一”与直觉的矛盾,通过举反例和步步追问使我要的答案逐步明了,从而又促使学生对概念表述的严格性进行探索,学生自已认识曲线和方程的概念必须要具备的两个关系,培养学生分析,归纳问题的能力,自然得出定义。并且把这个关系板书到黑板上,以示这就是这节课的重点。为了在重难点有所突破后强化其认识,又用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
然后通过运用与练习,纠正错误的认识,促使对概念的正确理解,通过反复重现,可以不断领悟,加强识记。所以安排了例1,例2(见课件)目的也在于帮助学生正确理解概念,通过解题辨析“两个关系”,实现本节课的教学目标,为此题目中的“曲线”和“方程”都力求简单,由此得出点在曲线上的充要条件。
曲线是符合某种条件的点的轨迹,为了下节课“求曲线的方程”的教学,安排了例3(见课件)证明曲线的方程,增加学生的感性认识,由于教材上有严谨的证明过程,让学生阅读并总结证明已知曲线的方程的方法和步骤,上升到理论上,可以培养学生独立思考,阅读归纳的能力。为了让学生更深入的理解这节课的主要内容,通过4个变式引申检查他们的掌握程度,但难度不能太大,我选择这样几个练习:(略)简单评讲后小结本课的主要内容,进一步强化“曲线和方程”概念中两个关系缺一不可,只有符合关系1)2)才能进行数与形的转化。由于下节课的内容是求曲线的方程,特地安排了一个思考探索题。
5、对学生学习活动的引导和组织
教案的设计与教案的实施往往有一定的距离,本节课有着概念性强,思维量大,例题与练习题不多的特点,这就决定了整节课将以学生的观察、思考、讨论为主,通过提问,举例,启发,互动完成教学,在具体操作上比较灵活,视学生的具体情况而定,把握学生的思维规律于数学思想的基本方法。例如,在概念教学中引导学生看反例,通过正反对比的方法,当学生观察了例1回答不清为什么,可以举出几个点的坐标作检验,这就是”从特殊到一般“的方法:或引导学生看图,比比划划,这就是“从直观到抽象”的方法。只要启发方法符合学生的认识规律,学生的认识活动就会顺利展开,而且在认知的过程中训练了探索的能力。强化数形结合、化归与转化的数学思想方法,完善学生的数学的结构,让学生动手、动脑,以及观察、联想、猜测、归纳等合理推理,鼓励学生多向思维、积极思考,勇于探索,从中培养学生合情推理能力,数学交流与合作能力以及主动参与的精神。
高中数学说课稿 篇6
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。 教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高
反馈训练 形成方法 小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用 内化新知
问题三 1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用 提升能力
问题四 1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:
圆心在原点时,半径为r 的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七 1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的.拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计
(一)突出重点 抓住关键 突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学说课稿 篇7
【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4. 教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程. 下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高
反馈训练 形成方法 小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2.如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I.直接应用 内化新知
问题三 1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点.
2.写出圆的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II.灵活应用 提升能力
问题四 1.求以点为圆心,并且和直线相切的圆的方程.
2.求过点,圆心在直线上且与轴相切的圆的方程.
3.已知圆的方程为,求过圆上一点的切线方程.
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的`过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III.实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.
2.求圆过点的切线方程.
3.求圆过点的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:
圆心在原点时,半径为r 的圆的标准方程为:.
②已知圆的方程是,经过圆上一点的切线的方程是:.
2.分层作业
(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.
3.激发新疑
问题七 1.把圆的标准方程展开后是什么形式?
2.方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计
(一)突出重点 抓住关键 突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.
(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.
(三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.
【高中数学说课稿】相关文章:
高中数学说课稿07-09
高中数学《集合》说课稿07-22
高中数学《向量》说课稿范文02-15
高中数学说课稿范文11-02
关于高中数学说课稿11-26
高中数学说课稿六篇01-23
高中数学说课稿9篇01-28
【精选】高中数学说课稿4篇02-03
高中数学《点到直线距离》说课稿02-15
高中数学说课稿15篇02-15