当前位置:育文网>教学文档>说课稿> 锥体的体积说课稿

锥体的体积说课稿

时间:2022-05-28 11:47:04 说课稿 我要投稿
  • 相关推荐

锥体的体积说课稿

  作为一名教学工作者,总不可避免地需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。说课稿要怎么写呢?下面是小编精心整理的锥体的体积说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

锥体的体积说课稿

锥体的体积说课稿1

  一、说教材:

  1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的做一做及练习十二的第3、4、5题。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  (1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  (2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  (3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

  学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

  二、说教法:

  著名教育家布鲁纳说过:教学不是把学生当成图书馆,而要培养学生参与学习的过程。学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。

  波利亚说过:学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现圆锥的体积等于和它等底等高的`圆柱体积的三分之一。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。

  几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:圆锥的体积等于与它等底等高圆柱体积的三分之一。然后再让学生讨论假如这句话中去掉等底等高这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了等底等高这个重要的前提条件。

  三、说学法

  人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法。

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法。

  苏霍姆林斯基认为:成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  (1)看图说出圆锥的底面和高。

  (2)一个圆柱体零件,底面积是6。28平方厘米,高是3厘米,它的体积是多少?

  这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

  2、谈话激趣,导入新课。

  六年级下册《圆锥体积》说课稿(1)我们已经认识了圆锥,掌握了圆柱体积公式及其应用,这节课,我们一起来学习圆锥的体积。(板书课题)

  (2)看到这个课题你们想学习一些什么?

  (3)教师总结,出示学习目标。

  这个环节让学生自己说出要学的目标,发挥了学生的主体作用,创设了和谐平等的课堂教学氛围。

  3、实验操作,探究新知。

  本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。

  (1)回忆圆柱体积计算公式推导方法。

  (2)动手操作,探究圆锥体积计算的公式。

  在实验时,我提出了四个问题,让学生带着问题进行操作:

  ①比一比,量一量,圆柱和圆锥的底和高之间有什么关系?

  ②用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?

  ③通过实验你发现了什么?

  ④你能用实验说明圆锥的体积不一定是圆柱体积的三分之一吗?

  (3)学生汇报实验结果。

  (4)教师归纳公式,学生记忆公式。(板书结论和公式)

  (5)小结,刚才我们用了实验发现归纳的方法推导出了圆锥的体积公式。

  这个环节,让学生动手操作,分析比较,归纳总结,使课堂真正活了起来;最后总结了学法,可以让学生举一反三,触类旁通。

  4、尝试练习,巩固提高。

  (1)同时出示例1和例2。

  例1:一个圆锥形的零件,底面积是19平方厘米。高是12厘米。这个零件的体积是多少?

  例2:在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1。2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  ①师出示例题,指名读题,说出已知条件和所求问题;

  ②分析:例题1直接告诉底面积和高,根据公式可以直接求出来;例题2要求小麦的重量,必须先求什么?

  ③指名板演。

  ③集体订正,指出计算圆锥体积时,一定不要忘了乘1/3。

  (2)巩固练习,形成技能,完成做一做。

  这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。

  5、看书质疑,布置作业。

  ①通过这节课的学习,你学到了什么知识?你用了什么方法学到这些新知识的?还有什么疑问的吗?

  看书总结和质疑问难,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑问难,从而实现课内向课外的延伸。

  ②布置课堂作业:练习十二的第3、4、5题。

锥体的体积说课稿2

  一、说教材

  1、本节教材是义务教育小学数学(鲁教版)六年下册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重、难点:⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;⑵教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

  二、说教法

  著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的`人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下四个教学程序:

  1、谈话导入

  ⑴出示圆柱:如果想知道这个容器的容积,怎么办?

  ⑵出示圆锥:如果想知道这个容器的容积,怎么办?

  2、教学例五

  ⑴引导观察:这个圆柱和圆锥有什么相同的地方?

  ⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

  ⑶讨论:可以用什么方法来验证你的估计?

  ⑷分组验证;引导学生用适合的方法进行操作验证。

  ⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

  ⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

  ⑺完成“试一试”。

  3、巩固练习

  做“练一练”。

  4、归纳总结

  通过本节课你有什么收获?有哪些问题需要我们今后注意?

锥体的体积说课稿3

  一、说教材

  (一)地位和作用

  锥体的体积是《立体几何》第二章第三节中的重要内容,是历年高考的重点区。通过本节知识的学习,使学生既加深了对祖原理的理解,同时也为学习台体的体积打下基础。所以,本节内容在教材中有着承前启后的作用

  (二)对教材的认识

  本节内容不单纯是为了让学生知道锥体体积的公式,更重要的是让学生知道这个公式是怎么得出的,在得出这个公式的过程中,采用了什么样的科学方法和研究手段。所以,我把书中对锥体体积公式的验证变为探索,没有按照教材那样直接给出锥体体积的公式再去详细证明,而是通过演示实验、设置疑问和微机显示引导学生观察、猜想、分析、论证,从而得出锥体的体积公式

  (三)教学目标

  1.知识目标:使学生掌握锥体的体积公式及其推导线索,并能初步掌握其应用

  2.能力目标:通过本节课的学习培养学生空间想象能力、分析解决问题能力、归纳总结能力和语言表达能力。素质教育是高中教学的主要任务,素质的一个重要体现就是能力的培养学生经过近一年的学习已经对高中数学的研究方法有了一定的认识,这正是培养能力的一个好时机。

  3.德育目标:通过借助微机模拟演示对锥体体积公式的探求,强化学生从感性认识到理性认识的过程,培养学生勇于探索的精神和“从特殊到一般”的辩证唯物主义观点。

  (四)重点、难点和关键

  锥体体积公式的探求既是重点又是难点,在探求锥体体积公式的过程中,三棱锥体积公式的发现是本节内容的关键

  二、说教法

  在教学过程中我主要采取启发式综合教学法,通过设疑置问提出一些思考性问题,利用计算机辅助教学来最大限度地调动学生积极参与教学活动。

  三、说学法

  本节课主要利用计算机辅助教学,充分发挥学生学习的潜能,不仅要使学生掌握运用联想、类比、证明等合情推理和逻辑推理来学习数学知识的方法,而还要促使学生确立科学的态度和科学的.方法。

  四、说教学过程

  (一)新课导入

  1.锥体平行底面的截面有什么性质?

  2.祖原理的内容是什么?

  3.柱体体积公式是什么?

  (二)新课教学

  设问1:等底面积等高的两个锥体的体积有何关系?

  设问2:通过上面的研究我们已经知道等底面积等高的两个锥体的体积是相等的关系,那么它们有什么样的数量关系呢?

  设问3:通过上面的研究我们已经知道了三棱锥的体积公式,那么对于所有锥体的体积公式又如何呢?

  (三)例题与巩固练习

  例1:已知三棱锥A-BCD的侧棱AD垂直于底面BCD,侧面ABC与底面的成角为θ。

  例3:如图:已知正四面体A-BCD的棱长为a,求该正四面体的体积。

  练习1:已知如图四面体ABCD,AB=b,CD=a,且AB与CD之间的距离为h,成角为θ。试求:锥体A-BCD的体积。

  练习2:一块正方形薄铁板的边长是22cm,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(保留两位有效数字)

  (四)归纳总结、布置作业

  五、说创新点和教学手段

  建构理论认为:知识不是通过教师的传授得到的,而是学习者在一定的情境,即社会文化背景下,借助学习过程中获取知识的其他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得;教师只是意义建构的帮助者、促进者,而不是知识的传授者与灌输者。

  在教学过程中,主要借助计算机辅助教学,为学生创设学习的情境,提供建构知识的素材,让学生始终处于动态的活动之中。

  六、说测评反馈

  学生通过本节课的学习,知识内容是自己动脑、动手而得到的,不是由老师强行灌输得到的,所以掌握得比较扎实,而且通过练习和测试反映地比较好。

  点击下载完整WORD文档,含图片数学符号等。

锥体的体积说课稿4

  一、教材分析:

  1.教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。

  2.教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识与能力:

  (1)了解柱体、锥体、台体的表面积.

  (2)能用公式求柱体、锥体、台体的表面积。

  (3)培养学生空间想象能力和思维能力

  过程与方法:

  让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。

  情感、态度与价值观:

  通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。

  3.重点,难点以及确定依据:

  本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  教学重点:柱,锥,台的表面积公式的推导

  教学难点:柱,锥,台展开图与空间几何体的转化

  二、教法分析

  1.教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。

  2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  三.学情分析

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的'最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  四、教学过程分析

  (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性

  (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。

  (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。

  (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (5)例题及练习,见学案。

  (6)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  (7)小结。让学生总结本节课的收获。老师适时总结归纳。

【锥体的体积说课稿】相关文章:

《圆柱的体积》教学反思(精选7篇)04-07

初中数学圆锥的体积知识点归纳03-31

《藏戏》说课稿04-07

《山中访友》说课稿04-07

《白杨礼赞》说课稿04-08

爱莲说说课稿04-07

小学美术说课稿04-07

初中体育说课稿04-07

《七颗钻石》的说课稿04-07

课文《洛阳诗韵》的说课稿04-07