- 相关推荐
中职数学等差数列的概念说课稿
在教学工作者实际的教学活动中,有必要进行细致的说课稿准备工作,说课稿有助于提高教师的语言表达能力。那么什么样的说课稿才是好的呢?以下是小编为大家整理的中职数学等差数列的概念说课稿,仅供参考,大家一起来看看吧。
一、教材分析:
(一)教材地位:
本节课教材选自人教版《数学:基础模块》6.2.1,主要内容是等差数列的概念,包括等差数列的定义,通项,例1,例2。在这节课前面的章节是《数列的概念》,后面的章节是《等差数列求和公式》,这节课需要联系已学章节中的内容,比如通项公式的定义,而且为后面章节《求和公式》准备知识基础。《中职数学教学大纲》对这部分知识的要求是“理解”——懂得知识的概念和规律以及与其他知识的联系。
(二)教学目标
根据本节课的教学内容,教纲对学生的要求,结合中职电子电工专业学生的知识水平与认知特点,确定本节课的教学目标:
1.知识目标:等差数列的定义(强调公差),等差数列的通项公式。
2.能力目标:培养学生计算技能、分析与解决问题能力。
3.情感目标:
(1)结合生活、生产实践,进行数学来源于生活的唯物观教育。
(2)通过问题解决培养学生注重细节,注重程序,注重逻辑的思维习惯。
(三)重点难点
1.重点:等差数列的概念(等差数列与一般数列的区别),求通项公式。
2.难点:求等差数列通项公式以及项。
二、教法
根据学生的知识水平与认知习惯,尽量从直观入手,利用图像,让学生体会“数”在“图”上的直观体现。分层教学,对A组,B组在课堂任务分配与课后作业中体现差别。设计问题引导上课进程,体现教师的主导地位。
三、学法
遵循学生的认知规律,给予充分的时间让学生动眼看,动嘴读,到动脑思考,体现学生的主体地位。
四、教学用具
PPT课件、玩具梯子。
五、教学过程
(一)预习环节
在上一节课《数列的通项》时布置预习作业:
1.百度百科“等差数列”(其中内容为等差数列的相关概念、基本性质、小故事等等)
2.阅读本节课并用红色标记概念,公式。
(二)课堂环节
1.引入(时间在5分钟左右)
(1)设问:梯子一共有九级,最高一级宽是33cm,往下第二级宽是40cm,第三级宽是47cm,那么接下来各级的宽各是多少?
(2)数列33,40,47,54,61,75,82,89从第2项开始每一项与前一项的差都是什么?
设计意图:引出等差数列的定义,而且为下节课例5的讲解做好铺垫。
2.分析概念,求通项(时间控制在10分钟左右)
(1)概念内涵:从第2项起(n≥2),每一项(a n)与前一项(a n-1)的差都等于同一常数(公差d)。
注:在分析内涵的同时,给出定义式。
概念外延:包括常数列。
(2)求通项公式。
设问1:已知一个等差数列的首项和公差,我们根据等差数列的定义可以求出它的第2项么?第3项呢?第n项呢?
设计意图:由浅至深,自然得出通项公式。
练习巩固:求引入问题中等差数列的通项。
结论:1.我们要写出通项公式必须求出首项与公差。2.通项公式中有4个变量,所以我们只要知道其中三个量就可以求出另一个量。
思考:通项公式可以进行怎么样的变式?
(3)练习:P13A组T2(已知三个量求另一个量)
3.例题、练习讲解(时间控制在20分钟左右)
(1)例1:已知等差数列8,5,2
求:1.它的首项与公差,通项公式.
2.等差数列中的第20项,第100项
设计意图:
1.分解例题,降低难度,突破难点提高学生参与度
2.凸显重点——通项公式的作用。
(1)巩固
(2)练习P13A组T1
(3)例2:已知等差数列-5,-9,
求:1.它的首项与公差,通项公式.
2.401是其中的第几项?
设计意图:增加三个小问题突破难点——求通项公式。强调重点——通项公式的作用。
(4)练习P13B组T1(改)
求等差数列2,9,16,···中的第10项,第n项
设计意图:巩固所学。
4.小结、作业(复习、预习作业布置)
(1)小结:如图,利用思维导图进行小结,让学生形成知识结构。
(2)作业:i复习巩固作业A组做P13 T1
【中职数学等差数列的概念说课稿】相关文章:
中职数学等差数列说课稿(精选5篇)04-08
高一数学等差数列说课稿07-28
《等差数列》说课稿11-03
等差数列说课稿08-01
集合的概念说课稿12-16
《导数的概念》说课稿12-14
函数概念说课稿11-28
《函数概念》说课稿07-07
《函数的概念》说课稿07-26