- 相关推荐
七年级上册《认识一元一次方程》说课稿
作为一名老师,就有可能用到说课稿,编写说课稿助于积累教学经验,不断提高教学质量。如何把说课稿做到重点突出呢?下面是小编帮大家整理的七年级上册《认识一元一次方程》说课稿,仅供参考,希望能够帮助到大家。
【说教材】
《认识一元一次方程》是北师大版七年级(上册)第五章第一节的内容,它是在学生学习了有理数的运算、代数式的基础上,首次接触有关方程的知识,是中学阶段应用数学知识解决实际问题的开端,也是今后学习用一次方程组、一元二次方程解决实际问题的基础,是学生体会数学价值观、增强学数学、用数学意识的重要题材。
《认识一元一次方程》提取于学生的切身体会,其中渗透了数学结构模式思想和归纳、化归等数学思想方法,是学生必备的数学修养和素质。本课时是一元一次方程第一课时的内容,设计了切合学生兴趣的问题情境,从而激发了学生的好奇心和主动学习的欲望。主动探究情境中包含的数量关系,体会方程是刻画实际问题的一个有效的数学模型。
【说教学目标】
(1)知识与技能目标
①归纳出一元一次方程的概念;
②感受方程作为刻画现实世界有效模型的意义。
(2)过程与方法
①经历和体验运用方程解决实际问题的过程,初步认识运用方程解决实际问题的关键是建立相等关系,提高思维水平和应用数学知识分析问题、解决实际问题的能力。
②让学生理解从特殊到一般的思维方法,培养学生综合分析问题的能力及数学问题的严密性。
③尝试在方程建模过程中,多角度地思考问题。
(3)情感、态度与价值观
①体会数学与社会的密切联系,了解数学的价值。
②敢于面对挑战、大胆尝试,从中获得成功的体验,激发学习数学的热情。
【教学重点】
通过丰富的实例,建立一元一次方程,展现方程是刻画现实生活的有效数学模型。
【教学难点】
根据具体问题中的数量关系列一元一次方程
【说教学方法】
给学生提供探索和交流的空间。使整个数学活动生动活泼、成为一个主动和富有个性的学习过程。借助多媒体辅助教学,通过有色彩、有动感的画面,提高学生学习数学的兴趣,提高学习的效果。
【说教学过程】
环节一:阅读章前图。
内容1:请一位同学阅读章前图中关于“丟番图”的故事。(大约1分钟)
丢番图(Diophantus)是古希腊数学家。人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程。上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛。五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉。悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。
目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
内容2:回答以下3个问题:(大约4分钟)
1、你能找到题中的等量关系,列出方程吗?
2、你对方程有什么认识?
3、列方程解决实际问题的关键是什么?
目的:第一个问题考查学生根据等量关系列方程的能力,对于解方程这里不做要求。第二个问题意在鼓励学生用自己的语言对方程进行描述,锻炼学生的数学语言表达能力。第三个问题强调列方程解应用题的关键是:寻找等量关系。
环节二:情境引入。
内容:与学生共同分析完成课本呈现的五个情境:
(1)小游戏:猜年龄
第一个问题学生可通过算术方法和方程两种方法解决。
第二个问题只能通过方程解决,体现方程的进步性。
(2)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm,大约几周后树苗长高到1m?
如果设x周后树苗长高到1m,那么可以得到方程:40+5x=100
(3)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每时行走多少千米?
设张叔叔原计划每时行走xkm。
(4)根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%。
如果设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,那么可以得到方程:(1+147.30%)x=8930
(5)某长方形操场的面积是5850,长和宽之差为25m,这个操场的长与宽分别是多少米?
如果设这个操场的宽为xm,那么长为(x+25)m。
目的:通过准确列五个方程,感受:列方程解应用题的关键是:寻找等量关系;五个方程可分为三种类型:一元一次方程,分式方程,一元二次方程。
环节三:归纳一元一次方程的定义,了解一元一次方程的解的含义。
内容1:P133议一议
(1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流。共得到五个方程。其中(1)、(2)、(4)都只有一个未知数,在小学学习时常见。
(2)方程2x—5=21,40+5x=100,(1+147.30%)x=8930有什么共同点?
它们都只含有一个未知数,且未知数的指数都是1。
目的:由(1)引导学生逐步深入地思考所列的五个方程的特点:未知数的次数、位置不同;由(2)得出一元一次方程的定义:在一个方程中,只含有一个未知数,而且等式中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程。
内容2:判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1)—2+5=3()(2)3x—1=0()
(3)y=3()(4)x+y=2()
(5)2x—5x+1=0()(6)xy—1=0()
(7)2m—n()(8) ()
目的:巩固定义,准确判断一元一次方程的形式。
内容3:方程的解得含义:使方程左、右两边的值相等的未知数的值,叫做方程的解。
完成随堂练习2题:
x=2是下列方程的解吗?
(1)3x+(10—x)=20;
(2)2 +6=7x
目的:了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左和右,看是否相等。相等则为原方程的解。
环节四:达标检测
内容1:完成教材上的随堂练习
1、根据题意,列出方程:
(1)在一卷公元前1600年左右遗留下来的古埃及纸草书中,记载着一些数学问题。其中一个问题翻译过来是:“啊哈,它的全部,它的,其和等于19。”
你能求出问题中的“它”吗?
解:设“它”为x。
(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分。甲队胜了多少场?平了多少场?
解:设甲队赢了x场,则乙队赢了(10—x)场。
2、达标练习:
1、如果=8是一元一次方程,那么m=。
2、下列各式中,是方程的是(只填序号)
①2x=1
②5—4=1
③7m—n+1
④3(x+y)=4
3、下列各式中,是一元一次方程的是(只填序号)
①x—3y=1
②x2+2x+3=0
③x=7
④x2—y=0
4、a的20%加上100等于x。
环节五:课堂小结
内容:师生互动,梳理本节内容。(本节课你的收获,你的疑惑。)
目的:鼓励学生结合学习本节课本内容及课前的预习,谈谈自己的收获与感想,包括如何调整自己的读书方法。
环节六:布置作业
1、习题5.1
2、思考:如何得到所列三个一元一次方程的解?
【七年级上册《认识一元一次方程》说课稿】相关文章:
七年级英语上册说课稿11-13
七年级英语上册说课稿11-17
七年级上册历史说课稿11-18
认识比说课稿11-08
比的认识说课稿11-30
七年级上册语文说课稿03-19
七年级上册《济南的冬天》说课稿11-03
二年级上册认识厘米说课稿11-03
《大数的认识》说课稿07-25