当前位置:育文网>教学文档>说课稿> 二元一次方程组的解法说课稿

二元一次方程组的解法说课稿

时间:2022-07-05 13:30:08 说课稿 我要投稿

二元一次方程组的解法说课稿

  作为一名为他人授业解惑的教育工作者,往往需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。那要怎么写好说课稿呢?下面是小编收集整理的二元一次方程组的解法说课稿,欢迎阅读与收藏。

二元一次方程组的解法说课稿

二元一次方程组的解法说课稿1

  一、 关于教材地位和作用的分析

  《 二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

  二、 关于教学目标的确定

  (一) 目标分析

  知识和技能目标:

  1、 会根据具体问题中的数量关系列出二元一次方程组及求解

  2、 能检验结果是否符合实际意义

  过程和方法目标

  1、 通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

  2、 在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

  3、 通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

  情感与态度目标

  1、 学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

  2、 通过列方程组解应用题的学习,认识到数学的价值。

  (二) 重难点分析

  教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

  教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

  难点突破采取的措施:

  1、 可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

  2、 用填空和选择的多种题型来寻找题目中的等量关系

  3、 例题中两个问题将它们分列开,将难点分散

  三、 关于教学方法的说明

  从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

  1、 遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

  2、 创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。

  (二)学法分析

  这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

  (三)教学手段

  通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

  四、 关于教学过程的设计。

  (一) 导入设计

  先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

  (二) 尝试练习

  通过导入中的.体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

  尝试练习

  1、方程探案记: 你知道盗贼如何分赃吗

  一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

  大家一起探讨

  (三) 范例设计

  通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

  某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

  问:1、该公司应安排几天粗加工,几天精加工, 才能按期完成任务?

  2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

  (四)反馈练习

  通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

  (五) 归纳小结

  教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

二元一次方程组的解法说课稿2

各位评委老师:

  大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。

  一、教材分析

  1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。

  2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:

  (1)知识与技能:

  ①会用代入法解二元一次方程组;

  ②能初步体会代入法解二元一次方程组的基本思想—“消元”。

  (2)过程与方法:

  ①培养学生基本的运算技巧和能力;

  ②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。

  (3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。

  3、教学重点、难点:

  重点:会用代入法解二元一次方程组。

  难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。

  二、教法与学法

  根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。

  三、教学过程

  第一环节:创设情境,导入新课

  引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?

  设置问题:

  (1)问题中有几个未知数?

  (2)若设胜X场,如何列出一元一次方程求解?

  (3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?

  (4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?

  问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。

  (通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)

  第二环节:师生合作,探究新知

  问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?

  在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组

  x+y=22①

  2x+y=40②

  能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X

  (2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40

  问题2:

  (1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?

  (2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

  (通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。

  通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方

  程的.过程,从而明确消元思想——由二元化为一元——由未知化为已知。)

  第三环节:师生合作,发现规律

  结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。

  (这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)

  第四环节:典例分析,规范步骤

  让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:

  ①方程组是如何变形的?还有其他变形方法吗?

  ②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?

  ③你能先求出的值吗?

  ③何检验你求出的结果是否正确?

  (通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)

  第五环节:熟练技能,升华提高

  要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。

  第六环节:归纳小结,布置作业

  1。从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。

  2。必做题课本103页

  选做题课本99页3,4

  (作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)

  四、板书设计

  8.2消元——二元一次方程组的解法(一)

  Y=4

  Y=22—x

  变形

  设胜了x场,负y场,x+y=22①代入

  2x+y=40②

  设胜了x场,则负

  (22—x)场,则消元

  2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)

  五、时间分配

  1、创设情景,引入新课(5分)2、师生合作,探求新知(10分)

  3、师生合作,发现规律(3分)4、典例分析,规范步骤(10分)

  5、熟练技能,升华提高(10分)6、归纳小结,作业布置(2分)

  六、设计说明

  本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。

二元一次方程组的解法说课稿3

各位评委、老师:

  大家好!

  我说课的题目是《二元一次方程组的解法——代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

  一、说教材

  (一)地位和作用

  本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

  (二)课程目标

  1、知识与技能目标

  (1)会用代入法解二元一次方程组

  (2)初步体会解二元一次方程组的基本思想“消元”。

  (3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:

  (4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

  2、情感目标:

  通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。

  (三)教学重点、难点

  重点:用代入消元法解二元一次方程组。

  难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

  二、说教法

  针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

  三、说学法

  本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

  四、说教学程序

  本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:

  1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

  2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的'过程予以归纳。

  ⑴变形:将其中一个方程的某个未知数用含有另一个未知数的式子表示。

  ⑵代入:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。

  ⑶求解:求出一元一次方程的解。

  ⑷回代:将其代入到变形后的方程中,求出另一个未知数的解。

  ⑸结论:写出方程组的解。

  3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

  4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是“消元”;②解二元一次方程组的一般步骤是:一变形、二代入、三求解。

  5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

二元一次方程组的解法说课稿4

各位评委、老师大家好:

  我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

  一、说教材

  (一)地位和作用

  本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

  (二)课程目标

  1、知识目标

  (1)、了解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。

  (2)、了解代入法的概念,掌握代入法的基本步骤。

  (3)、会用代入法求二元一次方程组的解。

  2、能力目标

  培养学生动手操作、探索、观察、分析、划归获得数学思想的能力;培养学生转化独立获取知识的方法并解决问题的能力。

  3、情感目标

  (1)、在学生了解二元一次方程组的“消元”思想,从初步理解化“未知”为“已知和化复杂问题为简单问题的划归思想中,享受学习数学的兴趣、提高学习数学的信心。

  (三)教学重点、难点

  重点:用代入消元法解二元一次方程组。

  难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

  二、说教法

  针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要合理创设问题情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的`变形及时强化“代入”的本质。

  三、说学法

  本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

  四、说教学程序

  本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:

  1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

  2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。

  3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

  4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:解二元一次方程组的主要思路是“消元”;解二元一次方程组的一般步骤是:“一变、二代、三求、四代、五定”。

  5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

  五、说应用

  《数学课程标准》指出:“数学来源于生活”“数学服务于生活”“数学问题要生活化”,“让数学走进生活”已是一种全新的教育理念,它有利于实现“不同人在数学上得到不同的发展。”为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。同时,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。

  总之,在数学教学中合理运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。

二元一次方程组的解法说课稿5

  各位评委、老师:大家好!

  我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

  下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

  一、教材分析

  教材的地位和作用

  本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

  2、教学目标

  根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

  (1) 知识技能目标:1)会用代入法解二元一次方程组

  2)初步体会解二元一次方程组的基本思想----消元

  (2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

  (3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

  3、重点、难点

  根据学生的认知特点,我确立了本节课的重难点。

  重点:用代入消元法解二元一次方程组

  难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

  为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

  成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

  二、教学方法

  我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

  三、学法指导

  我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学设计

  1、根据以上分析,我设计了以下六个教学环节:

  2、教学过程

  下面我就每一个教学环节,具体介绍我对本节课的教学设想。

  环节一:创设情境

  活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

  学生活动:列方程或方程组解决问题

  教师关注:学生是否能够多角度地考虑问题.

  设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

  环节二、尝试发现

  活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

  学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

  教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

  设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

  活动三:小组展示

  学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

  教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

  设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

  活动四:再看转化、把握解题技巧

  学生活动:观察转化过程中的技巧,并尝试总结。

  设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

  环节三、 小组闯关

  活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

  学生活动:做练习题

  教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

  设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

  活动六:闯关练习二,给出一个利用二元一次方程组解决的.实际问题,拓展学生的思维。

  学生活动:独立完成本题。

  设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

  环节四、拓展升华

  活动七:出示例题2.

  学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

  教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

  设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

  环节五: 反思小结

  活动八:我有哪些收获?

  学生活动:学生归纳总结

  教师关注:(1)学生是否养成归纳、整理、总结的好习惯;

  (2)评价学生是否全面理解并掌握了本节课的知识。

  环节六、布置作业

  1、必做题:

  P103 第2题 ⑵ ⑷, 第4题

  2、 选做题:

  设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

  最后我以著名数学家笛卡尔的一句话结束这节课。

  五、板书设计

  8.2二元一次方程组的解法

  ----代入消元法

  1、二元一次方程组 一元一次方程

  2、代入消元法的一般步骤:

  3、思想方法:转化思想、消元思想、方程(组)思想.

  六、教学感想

  在教学过程中,我始终:

  坚持一个原则——教为主导,学为主体

  坚守一个理念——先学后教,以学定教

  贯穿一个思想——享受数学,快乐学习

  以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

  我的说课到此结束,谢谢大家!

二元一次方程组的解法说课稿6

各位评委、老师大家好:

  我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

  一、说教材

  (一)地位和作用

  本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

  (二) 课程学习目标

  1、会用代入法解二元一次方程组。

  2、初步体会解二元一次方程组的基本思想——“消元”。

  3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的'主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

  (三)教学重、难点:

  用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

  二、说教法

  针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

  三、说学法

  本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。

  四、说教学流程

  (一)简单复习

  学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

  (二)自主学习:

  出示学习目标:学生齐读一下,对本课学习有一个大体了解。

  学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

  1.什么叫消元思想 2.代入消元法

  学习完成之后学生举手回答,教师总结。

  (三)合作探究

  电子白板出示问题:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  1.师友合作交流,探究新知

  在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

  学生活动:分别列出一元一次方程和二元一次方程组,

  设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

  设胜的场数是x,负的场数是y,列方程组得

  x+y=22

  2x+y=40

  2.自主探究,师友讨论

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

  3.学生归纳,教师作补充:

  上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  把下列方程写成用含x的式子表示y的形式

  (1)2x-y=5(2)4x+3y-1=0

  学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

  4、教师来说方法:(2)用代入法解方程组

  x-y=3

  3x-8y=14

  思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

  解:由变形得 X=y+3

  把代入,得3(y+3)-8y=14

  解这个方程,得 y=-1

  把y=-1代入,得X=2

  所以这个方程组的解是 X=2

  y=-1

  如何检验得到的结果是否正确? 学生活动:口答检验。

  总结步骤:变 代 求 写

  (四)小试牛刀(给你一个展示的舞台)

  解二元一次方程组

  1、 2、

  两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

  完成后,教师总结:解二元一次方程组的方法步骤:

  变 代 求 写

  (五)归纳总结,知识回顾

  1、通过这节课的学习活动,你有什么收获?

  2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

  (六)布置作业

  作业:中午:课本 第二题1、2小题

  晚上:《作业与测试》。

【二元一次方程组的解法说课稿】相关文章:

《消元-二元一次方程组解法》说课稿02-15

二元一次方程组教案02-27

二元一次方程组教学反思04-07

解二元一次方程组教学反思04-07

代入法解二元一次方程组教案04-04

七年级数学二元一次方程组说课稿03-13

消元解二元一次方程组教学反思04-04

消元解二元一次方程组教学反思04-22

《加减法解二元一次方程组》教学反思范文02-20