分数基本性质说课稿
作为一位杰出的教职工,可能需要进行说课稿编写工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的分数基本性质说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
分数基本性质说课稿1
尊敬的各位领导,老师们,大家好!这天,我很高兴能站在那里,向大家展示我的说课。我的说课资料是《分数的基本性质》。我将从以下这些方面来进行说明。
一、教材分析(课件)
《分数的基本性质》是人教版九年义务教育小学数学第十册中的资料。本节课资料是在分数的好处,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节资料将起着举足轻重的作用。
二、教学目标(课件)
根据教材资料及学生的认知水平,我制定了以下教学目标:
1..使学生理解与掌握分数的基本性质。
2.培养学生观察、比较、分析、概括等方面的潜力。
三、教法和学法(课件)
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的主角。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程(课件)
结合五年级学生的理解潜力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然十分乐意,并会立即被吸引,用心的思考故事中的问题。透过这样的故事设疑,立刻激起了学生探求新知的欲望。
(二)、动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)透过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观比较,学生不难理解,三个分数大小相等。但是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅仅复习了分数的好处,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。之后,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎样变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,能够很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括潜力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我推荐学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学资料。
(4)此刻,学生明白了聪明的猴王原先是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎样办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的潜力。
课堂的.高潮之后,我启发学生还能够用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。之后,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮忙学生把整堂课的学习资料融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
分数基本性质说课稿2
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的.饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
分数基本性质说课稿3
我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。
本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。
本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。
以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。
根据以上分析。我认为本节课的教学目标有以下几点:
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。
3、培养学生在合作中逐步形成评价与反思的意识。
4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
我认为本节课的教学重点是:理解、掌握分数的基本性质。
难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。
下面说说我的教学过程:
我将本课的教学设计以下几个环节,
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)
3、引导学生从左到右观察等式,想一下,这三个分数的.分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
分数基本性质说课稿4
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的.交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
分数基本性质说课稿5
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学资料
《分数的基本性质》一课是五年级下册第四单元的一个资料。这部分资料是在学生学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮忙学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,明白分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识资料概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)透过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括潜力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:
理解和掌握分数的基本性质
教学难点:
学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。
教具学具:
课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在用心的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,到达检验自学的目的。
五、说教学过程
(一)、创设情境激趣引新
(二)、新知探索
动手操作、形象感知
观察比较、探究规律
首尾照应、释疑解惑
(三)、巩固新知
判一判填一填找一找
(四)、扩展延伸
1、创设情境,激发兴趣,揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,透过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、探索新知
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后透过电脑再进一步证实学生的发现:透过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅仅复习了分数的好处,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,透过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的好处,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行比较,找出二者间的'联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的潜力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、巩固新知
在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包内含6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只但是说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的潜力。
4、拓展延伸
透过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习资料,激发学生不断探索新知的欲望。
六、板书设计
分数的基本性质
分数的分子、分母同时乘以或除以相同的数,
分数的大小不变。
分数基本性质说课稿6
一、说教学理念
1、以学生发展为本,着力强化主体意识。
2 、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、 致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法。
4、联系生活实际、感受数学与现实世界的紧密联系,体验数学的应用价值。
二、说教材
《分数的基本性质》一课是九年义务教育六年制小学数学第九册第四单元的内容。它是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法。
3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
本课的教学重点:在通过观察、比较后抽象、概括出分数的基本性质,并会简单应用。
本课的教学难点:理解和掌握分数的基本性质,沟通与商不变的规律之间的联系与区别。
教学准备有:多媒体课件、每位学生二张长方形纸、两张圆形纸。
三、说教法
本课的教学力求改变过去重知识,轻能力;重结果,轻过程;重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务的思想。根据学生的学情,以自主探究为主线,以发展创新为宗旨,为学生提供学习的材料,采用引导探究、引导合作、引导发现、组织讨论、组织练习等教法。精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学服务的目的。
苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要尤其强烈。因此,当学生对二分之一等于四分之二等于六分之三产生疑问并急于了解其中奥秘时,没有把现成的知识直接传授给学生,令他们得到暂时的满足,而是充分相信学生的认知潜能。在新知教学环节中,我主要采用引导探究、引导体验、组织讨论等方法最大限度地给予学生自主探索的时间和空间,把主动权交给学生让学生以自己的方式自由、开放地去探索、发现、创造分数的基本性质,让他们在尝试中发现、讨论中明理、合作中成功、质疑中发展,体验知识的形成过程,使学生的个性得到发展,创造欲得到满足。
现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。学生在写出一组大小相等的分数后我让学生用自己喜欢的方法加以验证,这一验证的过程使学生在动脑、动口、动手,多种感官配合下,把静态的知识转化为动态的求知过程。
新课程标准指出:学生的数学学习应当是一个主动和富有个性的过程。因此在例题教学环节,我采用自主探究的学法,让学生自主进行学习,从而学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。
在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的.思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学习方法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。
1、学生在探究分数的基本性质时,学生主要采用自主发现法、操作体验法、合作交流法,学生在得出二分之一等于四分之二等于六分之三后,小组合作找出几组像这样大小相等的分数,在这一过程中学生为了能写出大小相等的分数,必然会产生对那组等式进行观察的愿望,从中有所发现。之后学生通过同伴间的交流,运用折纸、等多种方法证明自己写出的那组分数大小相等,他们在尝试中发现,在实践中体验。最后学生交流在写数过程中的发现,最后在讨论中明理,揭示出分数的基本性质。
2、在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小不同的分数,并尝试完成做一做,达到检验自学的目的。
当然,由于学生所处的文化环境、家庭背景和自身的思维方式的不同,不同的学生所采用的学习方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。
五、 说教学程序
依据新的教学理念及学生的认知特点,将本课的教学设计为以下四个过程:即谈话导入、提出问题;自主探索、寻找规律;运用规律、巩固深化;反思评价,完善认知。
第一、谈话导入、提出问题:
前几节课我们学习了分数的意义以及数与除法的关系等内容,我想大家一定学的非常好对吗?先来考考大家!
设计意图:这的样设计,直接扣入主题,体现了数学的简洁之美,迅速的点燃孩子们求知欲望的火花,从而为主动探究新知聚集动力。
第二、自主探索,寻找规律。
此过程共设计了以下三个环节:
第一个环节:建立几组相等的分数,提供探究的数据。
设计意图:这样的设计,不仅复习了已有的知识,而且调动了孩子学习的积极性,用数形结合的思想理解分数的大小,从而很直观上建立起三组分子和分母各不相同而分数的大小确相等的数学。再通过学习已有的学习经验和手中的学具,让学生接着举出几组分数大小相等的分数,这样师生共同呈现的多组分数,为下面研究问题提供了大量的数据。
第二个环节:小组合作,探究规律。
设计意图:“疑是思之始,学之端”。这些分子和分母各不相同而分数大小确相同的分数之间一定存在着一些千丝万缕的联系,我们需要进一步的研究。这样的设计,最大限度的调动了孩子的学习积极性,使学生成为课堂学习的主人,让他们在独立自主,合作交流的基础上,对自己的所疑之处,提出合理的说明和解释,通过师生共同的梳理,把静态的知识转化为动态的求知程,从而得出结论。
第三个环节:沟通联系,揭示规律。
设计意图:联系分数与除法的关系,结合商不变的性质,进一步说明分数基本性质。这样的设计,从实践的观察和发现到理论的证明,层层深入的证明了我们发现规律的合理性,从而建立起“商不变的性质”与“分数的基本性质”之间的内在联系,新的学习活动与原有的认知结构相互作用,引起了认知结构的重新构建,这是从理论上对规律的证明,在大量的实践材料和理论证明中完成了“分数的基本性质”这一数学模型的构建过程。
第三、运用规律、巩固深化、拓展思维
设计意图:这一环节是进一步理解、深化新知识的重要环节,在设计练习题时,要体现“让不同的学生在数学上有不同的发展”这一新课程的理念。主要目的是培养学生的自主解题能力,在面对全体学生的基本上有所提高,注意对知识的巩固。立足于基本练习,注意练习与学生生活实际的联系,让学生学有价值的数学。通过综合练习培养学生的思维,也渗透“极限”和“归纳”的数学思想方法。
第四、反思评价,完善认知
你有什么收获?还有什么不明白的?你认为自己在今天课堂上的表现怎样?你帮助了谁或谁帮助了你?
设计意图:这样的设计,不但让学生谈知识技能方面的收获,还着重让学生谈了学习的方法、情感态度方面的收获,再一次激起良好的情绪体验。
分数基本性质说课稿7
《分数的基本性质》一课是学生在充分认识了分数的意义和简单应用的基础上进行教学的。本课的教学目标是:学生通过自己的观察、操作等手段,理解并掌握分数的基本性质,并能根据分数的基本性质对分数进行正确改写。同时,理解分数与除法的内在联系,并能用除法中商不变规律来解释分数的基本性质又是本课教学的一个难点。为了使学生能更好地理解并掌握分数的基本性质,达到本课的教学目标。同时又能为后面的约分、通分和分数的加减法等知识的学习打下扎实的基础。我能根据教材的'实际需要,按照新课程的要求精心设计。在实际教学中,我能努力做到以下几点:
第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。为此,我设计了一个阿凡提的故事,让阿凡提给三个儿子分田地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的兴趣必然提高,学习的积极性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的田地实际上是一样多的,只不过是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。
第二、发挥集体优势,培养学生的合作能力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,形成良好的人际关系,促进学生的全面发展。为此,在观察等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。另外,在故事导入时,我也充分让学生进行讨论,看看三个儿子有没有吃亏。活跃了课堂气氛,提高了学生学习数学的兴趣,取得了不错的教学效果。
第三、精心设计练习题,提高学生解题能力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅做累了学生同时也做怕了学生,消磨了学生学习的积极性。所以如何使学生愿做、乐做,同时又能达到教学目标,提高学生的数学综合能力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。
最新的小学数学五年级下册说课稿《分数的基本性质》:总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。
分数基本性质说课稿8
各位评委老师:
大家好!
今天我说课的内容是六年制(苏教版)小学数学第十册《分数的基本性质》。下面我将从“教材分析、学情分析、教学目标、教学重难点、教学流程、教学反思”六个方面来说课。
一、教材分析
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。在小学数学学习中起着承前启后、举足轻重的作用.
二、学情分析
学生之前已经初步接触了分数,已经掌握了商不变的性质,为学习本课打下了基础;《分数的基本性质》内容比较抽象,小学生的抽象逻辑思维在很大程度上需要直观形象思维的支撑,在教学中,化抽象为具体、为直观,对于顺利开展教学是十分必要的。
三、教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
四、教学重难点:
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质。
五、教学中多媒体的设计与意图
(一)激趣引思
学生的认知主要来源于生活,数学教学生活化是新课改所着重倡导的理念。因此,在本课的开始,我设计了“猴王分饼”这个故事情境,通过形象化、儿童化、趣味化的故事场景吸引全体学生的注意力,激起学习的兴趣,从而非常自然地引发新课的教学,使学生感到本课的学习很有趣、不枯燥。在这个环节中,信息技术手段的运用把故事搬到了学生的眼前,比教师仅仅口述要形象得多。
(二)温故探新,通过温习、观察、猜测、验证及动手操作来寻找规律。
1.通过课件直观的观察对比,让学生自主写数、自主验证、自主发现,经历分数的基本性质的.形成过程。
2.现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。这里我安排了一个创造活动,用折纸的方法创造出与相等的分数,让学生经历个人操作、投影展示、观察思考,再一次体会分数的相等关系,使学生不断有新发现,满足了他们的求知欲,把静态的知识转化为动态的求知过程。
(三)深挖教材,小组协作,突破的重、难点。
学生先进行自主探索研究,然后通过多媒体完整的演变过程展示、以及教师及时有效的点拨,让学生能够高质量地进行研究性学习,在思维的激烈碰撞中,得出规律,再列举一组相等的分数来验证规律,让学生初步体会数学结论的严谨性。
(四)巩固拓展,多层练习、运用规律。
以练习为载体,培养学生思维的深刻性是课堂教学的重要目标之一。通过由浅入深的几个练习,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识。
这里我采用教师操作与学生上机操作相结合的方式,避免了教师在教学中一味地讲解和演示,这不仅实现了信息技术与教师教学中的整合,也实现了与学生学习过程中的整合。
(五)反思评价,完善认知。
依据本节课的教学目标我特定这节课的“课堂自我评价表”
并且让学生把自己所学所感写出来,完善了他们的认知。
(六)课外延伸
陶行知先生说过:“行是知之始,知是行之成”实践才能出真知,为此我在自己的博客和把一些关于本节课教学内容的网址推荐给学生,让他们积极拓展课外知识,养成从小乐于探究的良好学习习惯。
五、说教学反思
纵观本节课,借助信息技术创设了大量有助于激发学生学习兴趣、理解数学知识的生活化场景,开展了一系列数学探究活动,一方面深深地吸引了学生,让学生的精力能始终自然地放在数学学习上;另一方面通过教师及时、有效的指导,组织学生进行了一些有价值的研究,为原被认为枯燥乏味的数学课堂变得丰富多彩,课件中的部分板块是从东北师大资源库中选取后灵活组合,既体现了教学的个性化,又节省了制作时间,“信息技术与课堂整合”无疑将是信息时代中占主导地位的课程教学方式,也将是以后学校教育教学的主要方法。
分数基本性质说课稿9
各位老师:
下午好!我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。
一、教材分析
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
二、学情分析
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
根据教材分析和学生情况,制定如下教学目标
三、教学目标
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
依据教学目标,确定教学重难点
四、教学重难点
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数
理解分数基本性质的含义,掌握分数基本性质的推导过程。
五、教学方法
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
六、教具学具准备
准备大小相等的圆形纸片,水彩笔等。
七、教学过程:分六个环节
(一)故事设疑,揭示课题。我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的14,沙和尚吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
(二)合作探索,寻找规律。请同学们观察14,28,416 ; 3|4,68,1216这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的`数(0除外),分数的大小不变。
(三)巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母 ( );23=()18621=2()等这样的题,进行练习。
(四)梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
(五)多层练习,巩固深化。
我将设计从巩固到思维拓展三个层次的练习。
1.
2. (1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
3.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上( )。
(六)全课小结
现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?
分数基本性质说课稿10
大家好,今天,我说课的内容是人教版实验教材五年级下册的《分数的基本性质》。我将从教材、教学目标、教学重点和难点、教学过程与板书设计等方面做一个说明,首先是说教材。
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
接下来说说学情分析。学生在三年级上学期已经初步认识了分数,还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。
本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
1、知识与能力目标:理解和掌握分数的基本性质,培养观察、比较及动手能力,进一步发展思维。
2、过程与方法目标:经历发现问题、探究问题、解决问题的全过程,体验解决问题策略的多样性。
3、情感态度与价值观目标:在探究活动中,获得成功体验,建立自信心,感受数学的严谨性。
根据教学目标和学生情况,我把本课的重点设定为:理解、掌握分数的基本性质。难点设定为:发现和归纳分数的基本性质,并用它解决相应的问题。
本着“以学生发展为本”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法、组织练习法组织教学。
动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发猜想 ——自主探索,寻找规律——比较归纳,揭示规律——分层练习,巩固深化——课堂小结 ,布置作业”五个环节。
(一) 创设情境,引发猜想。上课开始,我引入故事:从前有座山,山里有座庙,庙里住着一个慈母般的老和尚和三个调皮的小和尚,小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚烙了三张同样大小的饼想分给小和尚吃。还没给呢,小和尚就开始要了。第一个和尚说:“我要一块儿”;第二个和尚说:“我要两块儿”;第三个和尚说:“不行不行,我得多要点儿,我要四块儿”。 老和尚听了他们的话,二话没说,就把第一长饼平均分成四块儿,取其中的一块儿给了第一个和尚;接着又把第二张饼平均分成八块儿,取其中的两块儿给了第二个和尚;最后把第三张饼平均分成十六块儿,取其中的四块儿给了第三个和尚。故事讲完了,老师有一个问题,三个小和尚谁的饼多,谁的饼少,你知道吗? 先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
(二) 自主探索,寻找规律。
1、小组合作,验证猜想。
这只是大家的猜想,究竟哪个和尚吃得多呢?亲自分一分,验证你们的猜想。
2、既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
引导学生得出:这三个分数是相等关系,分数的分子和分母变化了但分数的大小不变。
3、老和尚把三张大小一样的饼分给小和尚一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=12/16。
(三)比较归纳,揭示规律。
1、 通过演示,学生小组合作,集体交流,归纳性质。
2、师生共同总结规律,找出性质中的关键词,然后齐读3遍,注意关键的字词(同时,0除外)要重读。
3、现在,大家知道老和尚是运用什么性质分饼了吗?
4、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(四)分层练习,巩固深化。
根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的`基础性练习,如填空、判断。 其次是稍有变动的,需要结合分数与除法关系完成的变式练习。
(五)课堂小结,布置作业。
有层次的练习之后,我会及时引导学生回忆本节课学习了哪些内容,让学生说说有什么收获。学生在说的过程中进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。作业也是必不可少的,针对今天学习的内容,我布置了三道题,有目的地让学生通过练习巩固所学知识。
1、填上合适的数,说说你填写的根据.
1/3 =()/6 10/15 =()/3 1/4 = 5/()
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=(4÷2)/(9÷3)=2/3 ( )
13/18=13+2/18+2=15/20 ( )
3、选择你喜欢的一道题来做
(1) 与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2) 9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
好的板书是一篇文章浓缩了的精华,是直观的教学方法,是课堂教学中师生双边活动的缩影,能直观形象地反映课堂教学的全过程。根据本节课的内容,我设计了如下板书:
分数的分子、分母同时乘以或除以相同的数,(0除外)分数的大小不变。这叫做分数的基本性质。
我的说课到此结束,谢谢大家!
分数基本性质说课稿11
这天我说课的资料是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学过程”五个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化等数学思想方法。
二、说教材
分数的基本性质是九年义务教育小学数学第十册第四单元的资料,这一部分教学资料是在学生学习了分数的好处、分数与除法的关系、商不变的规律等知识的基础上进行教学的。在分数教学中占有重要的地位,它是约分、通分的基础。根据教材资料和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,明白分数基本性质与整数除法中商不变规律的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、分析、比较、决定及动手实践的潜力,进一步拓展学生的思维。
2、情感、态度:激发学生用心主动学习的情感状态,养成注意倾听、观察事物的学习习惯。
3、教学重点和难点:理解和掌握分数的基本性质的概念,运用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在用心的思维
4.树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以到达促进学生学习方式的转变,实现教学目标的目的
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,到达检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。为此,我王大爷分地的故事,让王大爷给三个儿子分地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的'兴趣必然提高,学习的用心性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原先,三个儿子分到的地实际上是一样多的,只但是是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的潜力。
第二、发挥群众优势,培养学生的合作潜力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,构成良好的人际关系,促进学生的全面发展。为此,在观察相等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。
第三、精心设计练习题,提高学生解题潜力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅仅做累了学生同时也做怕了学生,消磨了学生学习的用心性。所以如何使学生愿做、乐做,同时又能到达教学目标,提高学生的数学综合潜力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我安排了一些决定题、口答题。题型的丰富不仅仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的潜力。
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能到达理想的教学效果。
分数基本性质说课稿12
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:
理解和掌握分数的基本性质
教学难点:
学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。
教具学具:
课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的`基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同
的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、创设情境激趣引新
(二)、新知探索
动手操作、形象感知
观察比较、探究规律
首尾照应、释疑解惑
(三)、巩固新知
判一判填一填找一找
(四)、扩展延伸
1、创设情境,激发兴趣,揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、探索新知
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、巩固新知
在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
4、拓展延伸
通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。
六、板书设计
分数的基本性质。
分数的分子、分母同时乘以或除以相同的数。
分数的大小不变。
分数基本性质说课稿13
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的`?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
分数基本性质说课稿14
一、说教材
《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?
4.用--用已学过的"分数的基本性质"解决有关的'数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。
二、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
三、说教法
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、3/6、 4/8这些分数有什么关系?
(学生会说这四个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/5 1/6 4/9 4/6 12/16
3/4 2/3 20/25 6/36 8/18
分数基本性质说课稿15
一、教材分析
1、 教材内容
《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。
2、知识间的联系:
七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质
同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。
二、指导思想与设计理念
新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。
根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。
三、学情分析
前测:(问卷形式)
问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。
2:试着做一做下面这些题比较大小:
4/7○2/7 1/2○2/4 3/5○9/15
分析:暂无
结论:暂无
四、教学目标及重难点
教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。
教学难点:
理解和掌握分数的基本性质。
解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。
五、教法学法:
教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。
学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、教学过程
一、迁移旧知.提出猜想
1回忆旧知
活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数除数=
通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
二、验证猜想,建构新知
环节1、 看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。
环节2、 讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
通过让学生表述怎么判断它们相等的锻炼学生的`表达能力。
3、研究规律
第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等( )不相等()
猜想是否成立?
成立( )不成立( )
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
环节4、质疑完善
3/4 = 3( )/ 4( )
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3X/ 4X(X0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
通过这个环节的练习,进行第一次数学建构。
三、 练习升华
通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、 和 哪一个分数大,你能讲出判断的依据吗?
四、总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)
在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。
五、作业p87-1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
68
34
1216
【分数基本性质说课稿】相关文章:
《分数的基本性质》说课稿06-09
分数的基本性质说课稿11-07
《分数的基本性质》说课稿04-09
《分数基本性质》说课稿02-16
分数的基本性质说课稿11-11
分数的基本性质说课稿优秀03-31
关于《分数的基本性质》说课稿01-06
分数的基本性质说课稿精选15篇07-27
分数基本性质说课稿(15篇)08-08