- 相关推荐
反函数说课稿
作为一位优秀的人民教师,时常会需要准备好说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那要怎么写好说课稿呢?以下是小编帮大家整理的反函数说课稿,希望对大家有所帮助。
反函数说课稿1
一、教材分析:
反函数这一节在《函数》这章中是一个难点,篇幅不多(课时少),在高考考纲中的要求也比较简单。但我个人这样认为,复习课应尽量把与本节内容相关的新旧知识系统地串在一起,所以在备课时要找一条能把知识点连在一起的线索。这线索就是函数的三要素:
(一)教学目标:
①使学生掌握反函数的概念并能求出简单函数的反函数(考纲要求)。
②互为反函数的两个函数具有的性质,以及这些性质在解题中的运用。
③通过知识的系统性,培养学生的`逆向思维能力和逻辑思维能力。
(二)重点、难点:
①重点:使学生能求出简单函数的反函数。
②难点:反函数概念的理解。
二、教学方法:
整节课采用传统的讲解法。首先要认识反函数应先有函数的概念这知识,用例子来说明反函数的求法以及让学生来完成一题没有反函数的函数,从而得出一个不满足函数定义的关系式,通过分析来得到一个函数具有反函数的条件。这里是用“欲擒故纵”的手法,加深对概念的理解,也是突破难点的关键。
三、学生学习方法:
学生认识了反函数的求法(步骤),在老师的引导下得出三个结论,并运用这些结论来解题。希望能达到提高学生性质的解题能力和思维能力的目标。
四、教学过程:
(一)温故:函数的概念、三要素
(二)新课:例1:求y=2x+1的反函数解:即(x∈R)注意步骤,新关系式满足从R到R是一个函数关系式。互这反函数的特点:
①运算互逆。
②顺序倒置例2:y=x2(x∈R)用y的代数表示x得x=这x不是y的函数,不满足函数定义若对,y=x2的定义域改为x≥0可得x=,即y=(x≥0)当逆对应满足函数定义,原函数才存在反函数。
得到结论
①互为反函数的定义域、值域交换即分别在同一坐标上画出以上互为反函数的图象得到结论
②图象关于y=x对称
③单调性一致
(三)练习
1求的反函数,并求出反函数的值域。
2函数的图象关于对称,求a的值。讲评:略。
反函数说课稿2
一、说教材
1、 地位与重要性
“反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。
2、教学目标
(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;
(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;
(3)培养学生发现问题、观察问题、解决问题的能力;
(4)使学生树立对立统一的辩证思维观点。
3、教学重难点
重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。
难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。
二、说教法
根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。
引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的`“容器”。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
三、说学法
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
四、说过程
在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。
一、新课导入
首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?
首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。
这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。
二、新课讲授
在导入的基础上,给出反函数的具体概念。
给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f-1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。
进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?
引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。
这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。
但是,具体怎样求一个函数的反函数呢?
这些问题,必须通过实例解决,于是进入例题解答过程。
例1、 求下列函数的反函数。
(1)y=3x-1(x∈R); (2)y=x3+1;
(3)y=(2x+3)/(x-1)(x∈R且x≠1)
通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。
启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键 通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、 y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、 y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。
教师板书第(1)小题,学生完成后两题。
此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)--→互换(求出所给函数的值域并把它改换成反函数的定义域)--→改写(将函数写成y=f-1(x)的形式)。
教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。
“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。
例2、(1)y=x2(x∈R)的反函数
(2)y=x2(x≥0)的反函数是
(3)y=x2(x<0)的反函数是
相当一部分同学会按部就班求出第(1)小题的“反函数” y= (x∈R)。这对不对呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x→y的单值对应,但反过来呢?y→x存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y→x的单值对应,这是反函数存在的前提。认清这一问题后,引导学生进一步分析,y=x2(x∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x2(x≥0),y=x2(x<0)两个函数的反函数。这样,就突破了主要难点,澄清了概念,并为以后反正弦函数的教学做好理论准备。
这样设计的好处是:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。 $_:7au%X
此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。
三、终结阶段 Z7
(一)课堂练习
出示电脑幻灯,让学生完成以下练习:
(1)函数y=2|x|在下列哪个定义区间内不存在反函数? ( )
(A)[2,4]; (B)[-4,4] (C)(0,+∞] (D)(-∞,0]
(2)求反函数:y=x/(2x+5),(x∈R且x≠-5/3)
(3)已知y= ,x∈[0,5/2],求出它的反函数,并指明定义域。
第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。第二道题使学生熟悉反函数的求法,突出重点。第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。
(二)小结归纳
通过对反函数概念和性质的小结,使学生理清这节课的重难点,并使终结阶段的教学更为完整,达到本堂课的教学目标。
让学生做课本P65习题六2、3、5,通过作业反馈学生掌握知识的效果,以利课后解决学生尚有疑难的地方。
布置一道发散性的练习(已知函数y=f(x),(x∈A)是增函数,问:反函数y=f-1(x)单调性如何?图象中如何反映?),进一步深化教学。
总之,在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。
反函数说课稿3
教学目标
依据教学大纲、考试说明及学生的实际认知情况,设计目标如下:
1、知识与技能:
(1)了解互为反函数的函数图像间的关系,并能利用这一关系,由已知函数的图像作出反函数的图像。
(2)通过由特殊到一般的归纳,培养学生探索问题的能力。
2、过程与方法:由特殊事例出发,由教师引导,学生主动探索得出互为反函数的函数图像间的关系,使学生探索知识的形成过程,本可采用自主探索,引导发现,直观演示等教学方法,同时渗透数形结合思想。
3、情感态度价值观:通过图像的对称变换是学生该授数学的对称美和谐美,激发学生的学习兴趣。
重点难点
根据教学目标,应有一个让学生参与实践,发现规律,总结特点、归纳方法的探索认知过程。特确定:
重点:互为反函数的函数图像间的关系。
难点:发现数学规律。
教学结构
教学过程设计
创设情景,引入新课
1、复习提问反函数的概念。
〇学生活动学生回答,教师总结
(1)用y表示x
(2)把y当自变量还是函数
提出问题,探究问题
一、画出y=3x-2的图像,并求出反函数。
●引导设问1原函数中的自变量与函数值和反函数中的自变量函数值什么关系?
〇学生活动学生很容易回答
原函数y=3x-2中反函数中
y:函数x:自变量x:函数y:自变量
●引导设问2在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?
〇学因为=3-2成立,所以成立即(,)在反函数图像上。
●引导设问3若连结BG,则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?
〇学生活动学生根据图形很容易得出y=x垂直平分BG,点B与点G关于y=x对称。学生证法可能有OB=OG,BD=GD等。
▲教师引导教师用几何花板,就上面的问题追随学生的思路演示当在y=3x-2图像变化时(,)也随之变化但始终有两点关于y=x对称。
●引导设问4若不求反函数,你能画出y=3x-2的反函数的图像吗?怎么画?
〇学生活动有了前面的铺垫学生很容易想到只要找出点G的两个位置便可以画出反函数的图像。
●引导设问5上题中原函数与反函数的图像,这两条直线什么关系?
〇学生活动由前面容易得出(关于y=x对称)
●引导设问6若把当作原函数的图像,那么它的反函数图像是谁?
〇学生活动由图中可以看出关于y=x相互对称所以他的反函数图像应是,另外由上节课原函数与反函数互为反函数也可得。
●引导设问7以上是一个特殊的函数,图像为直线,若对一个一般的函数图像你能根据上题的原理画出反函数的.图像吗?如图是的图像,请你猜想出它的反函数图像。
〇学生活动由上题学生不难得出做y=x的对称图像(教师配合动画演示)
●引导设问8通过上面的两个问题我们可以得出原函数图像与反函数图像有什么关系?
▲学生总结,教师补充结论
(1)一个函数若存在反函数则原函数和反函数的图像关于y=x这条直线对称。
(2)一个函数若存在反函数则这两个函数许违反寒暑,若把其中一个图像当作原函数图像则另一个图象便是反函数图像。
习题精炼,深化概念
●引导设问9根据图像判断函数有没有反函数?为什么?对自变量加上什么条件才能有反函数?
〇学生活动学生从图中可以发现在原函数中可以有两个不等的自变量与同一个y相对应,当我们用y表示x后,对一个y会有两个x与之对应,所以应加上自变量的范围,使得原函数是从定义域到值域的一一映射。如:加上x>0;x<0;x等等
●引导设问10什么样的函数具有反函数?
▲教师引导学生总结如果一个函数图像关于y=x对称后还能成为一个函数的图像,那么这个函数就有反函数,这个图像就是反函数的图像。这与反函数定义相对应。即定义域到值域的一一映射,这样的函数具有反函数,而单调函数具备这个特点,所以单调函数一定有反函数。
●引导设问11通过上图我们发现保留图像的单调增(减)的部分,那么它的反函数也为单调增(减)的。在看一下前面的几个例子你能得到什么样的结论?
〇学生活动通过观察学生容易得到"单调函数的反函数与原函数的单调性一致"然后教师进一步追问为什么?(由前面我们知道若一个函数存在反函数则x与y之间是一个对一个的关系,而原函数是增函数即x越大y也越大,当然y越大x也越大。)
●引导设问12由图中原函数的图像作出反函数的图像,并回答原函数的定义域值域与反函数的定义域值域有什么关系?
〇学生活动由上面结论很容易做出通过图形的样式使学生进一步认识到原函数的定义域值域是反函数的值域定义域。
总结反思,纳入系统:
内容总结:
1、在原函数图像上,那么(,)在反函数图像上。
2、与(,)关于y=x对称。
3、原函数和反函数的图像关于y=x这条直线对称。
思想总结:
由特殊到一般的思想,数形结合的思想
布置作业,承上启下
●说明:教材中对反函数(第二课时:互为反函数的函数图像间的关系)的处理是通过画几个特殊的函数图像得出一般结论的。我认为这样处理虽然可以使学生得出并记住这个结论,但学生对这个结论理解并不深刻。这样处理也不利于培养学生严密的数学思维。而我对这节课的处理是在不增加教材难度的情况下(不严密证明)利用在原函数图像上,那么(,)在反函数图像上这一性质,从图形上充分研究与(,)的关系。经讨论研究可得出结论"与(,)关于y=x对称"。进而通过任意点的对称得出原函数和反函数的图像关于y=x这条直线对称,另外利用任意点来研究图像也是以后数学中经常用到的方法。具体操作大致如下:首先请学生画出y=3x-2的图像,并求出反函数,然后提出问题1:原函数中的自变量与函数值和反函数中的自变量函数值什么关系?学生很容易得出原函数与反函数中的自变量,函数值正好对调即:原函数y=3x-2中y:函数x:自变量,反函数中x:函数y:自变量。问题2:在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?对于这个问题有了上题的铺垫,学生不难得出(,)在反函数图像上。问题3:若连结B,G(,),则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?对于这个问题的设计重在帮助学生理解与(,)为什么关于y=x对称,突出本课重点和难点。其它环节具体见教案。
反函数说课稿4
本次说课主要从五个部分进行,分别是教材分析、学情分析、教学目标分析、教学重难点分析和教学设计。
首先是教材分析:
我所使用的教材选自人教20xx年版的《全日制普通高级中学教科书数学第一册(上)》,《反函数》函数部分的一个重难点,也是研究两个函数相互关系的重要内容,而反函数的概念又是其中的抽象难理解部分,因此反函数概念的学习有助于学生进一步加深对函数的认识和理解。
接着是学情分析:
高一的学生在学习反函数之前,已经对函数的概念、表示法,映射等内容有了一定的认识和了解,那么有了这些储备知识,学生在本节课的学习中可以在教师的引导下进行思考和理解,从而能较好地完成对本节课的学习。
接下来的教学目标分析是从知识与技能、过程与方法、情感与态度入手的:
知识与技能:让学生学生了解反函数的概念;通过本节课的学习会求一些简单函数的反函数过程与方法:教学上使用引导、发现法,这主要通过从具体到抽象、从特殊到一般的过渡方式来实现。
情感与态度(也就是德育目标):通过本节课的学习,能使学生发现函数内部因素相互联系,从而培养他们善于发现分析的能力,使他们学会以发现分析的目光去关注数学,以联系发展的态度去学习数学。
第四部分是教学重难点分析
本节课的教学重点放在反函数的概念、反函数的求法上,而由于反函数的概念相对抽象难理解,所以教学难点自然落在了反函数的概念理解。
下面我对第五部分的教学设计进行详细展开:我的整个教学过程分成五个环节
一、新课引入
由于反函数的概念比较抽象难理解,在概念讲解前先以具体例子入手逐步引导,这样比较符合学生的接受规律。
联系函数的'三要素,通过给出的两对函数之间三要素变化的比较,让学生对反函数首先有了一个大概的认识,然后再对反函数下严格的定义并进行详细的讲解。
二、概念讲解
由于教材中给出的反函数的概念较长且较抽象,会给学生在理解上产生一定的难度,故引导学生从另外的角度分三步完成对反函数概念的理解,这样较易于学生接受和理解。
1.由函数式yf(x) xA yC,得到式子x(y)
2.根据函数的概念去说明x(y)是一个函数,其中定义域为C,值域为A.
3.下结论说明函数x(y)是函数yf(x)的反函数,并记作xf1(y),一般互换x和y,写作yf1(x).
三、通过问题的讨论加深学生对反函数的认识和理解
1.所有函数都有反函数吗?
通过两个具体的函数(在讲课的课件中有详细给出)的异同,引导分析发现并不是所有的函数都有反函数。
2.互为反函数的函数有什么关系?
通过引入部分例子分析,结合反函数的概念,引导学生从从函数的三要素出发去描述互为反函数的两函数之间的关系:
(1)对应法则互逆(2)定义域与值域互换3.yf1(x)的反函数是什么?
1在回答了第二个问题的基础上,引导学生利用以上结论发现yf(x)的反函数恰好是yf(x),即有yf(x)与yf1(x)互为反函数。
四、例题、联系相结合,归纳求反函数的方法
首先分析讲解例题中的(1)、(2),再让学生结合反函数概念的分步理解思考归纳,尝试从解题过程中总结出求已知函数反函数的一般方法。
1.找原函数的值域;
2.由原函数式解出x(y);
3.互换x和y的位置;
4.标注反函数的定义域。
简化为一句话:一找、二解、三换、四标。
本次课堂不再安排别的练习题,而让学生对照求法步骤,自行完成(3)、(4)的求解作为课堂练习。
五、课堂小结、布置作业
本节课所布置的作业是求已知函数的反函数,主要为了巩固学生对本节课知识的学习并加强对反函数求法的使用。
本节课的整个课堂设计,希望能从从新课引入到概念讲解、从概念学习到深入学习理解,实现从从具体到抽象、从特殊到一般的过渡方式。我觉得这样的设计,符合学生学习的循序渐进的接受规律,在教学过程中可以贯穿着教师引导学生讨论学习的主线,体现了教师教学的辅助作用与学生学习的主体地位。
【反函数说课稿】相关文章:
生物说课稿 生物说课稿07-10
颐和园说课稿圆明园说课稿03-25
说课稿05-17
春酒说课稿 春酒说课稿最新08-13
《梯形》说课稿10-26
台阶说课稿10-28
数轴说课稿11-02
水墨说课稿03-04
《白杨》说课稿03-23