相交线说课稿
在教学工作者实际的教学活动中,可能需要进行说课稿编写工作,说课稿有利于教学水平的提高,有助于教研活动的开展。说课稿应该怎么写呢?下面是小编收集整理的相交线说课稿,希望对大家有所帮助。
相交线说课稿1
说课内容选自义务教育课程标准实验教科书《数学》七年级下册,第五章相交线与平行线中的5.1.1相交线第一课时,主要内容包括:对顶角、邻补角的定义、对顶角的性质,下面我将从教学背景、教学目标的确定、教学重点与难点、教学方式与手段、教学过程设计等几个方面对本节课的教学设计进行说明.
一、背景分析
1.学科的特点
两条直线的位置关系有三种,相交、平行和异面,异面的知识在高中阶段学习,而平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,是初中阶段学习的重点内容之一,同时也是平面几何图形由简单到复杂的最基本图形之一——由两条直线相交构成的角。相交线、平行线在现实生活中随处可见,教学内容紧密联系学生生活和社会发展,同时它们也是同一平面内两条直线的基本位置关系;在七年级上册,已经学习了最基本的平面图形——直线、射线、线段和角,了解了它们的性质,是本章学习的基础;在后续的学习中,三角形、特殊四边形、相似形、圆的知识中,都和相交线的知识息息相关,对顶角相等的性质主要是传递角相等。数学作为一门学科,主要是运用理性,以理服人。学习逻辑推理的顺序按照“说点儿理”“说理” “简单推理”“用符号表示推理”等不同层次分阶段逐步加深。
2.数学课程标准的要求
新课标提出,在课程的学习过程中重视学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。在发展空间观念中提出:能从复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系,我讲的相交线这节课恰好是构成复杂图形的一个基本图形,是一个起始点,数学课程标准要求了解补角,对顶角,知道等角的补角相等、对顶角相等,我觉得有些低,在后续的学习知识中不断的会遇到对顶角的图形,所以我把它定位于“理解对顶角相等的性质,并能运用它解决一些实际问题”
3.教材处理
教材从剪刀剪开布片过程中角的变化来引出两条直线相交所成的角的问题,引出对顶角和邻补角的概念;对于“对顶角相等”,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,通过学生的充分讨论,探究发现对顶角相等这个结论,然后再对这个结论进行了说理,这样就将实验几何与论证几何相结合。通过阅读教材,理解教材,我在知识的引入上没有采用教材提供的方法,而是从学生已有的知识经验出发,采用画一画,画出一个角两边的反向延长线,即构成两条相交的直线,来探索4个角之间的位置和大小关系;对于例1的处理,则增加了两个变式练习,主要向学生渗透用方程思想解决几何问题;然后增加了理解概念的识图题,和实际应用此知识的题目,感受学习相交线知识的必要性。
4.学情分析
(1)知识的储备:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会说点儿理。由于学生的来源复杂,掌握知识的程度各不相同,70%的学生能准确的画出一个角的余角或补角,知道余角和补角的性质,但应用性质则只有30%的学生能有意识的用。
(2)能力的储备:学生初步具有探究问题的能力,积累了一定的知识经验,有一定的学习迁移能力,但对于几何知识的准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确;
(3)心理特点:初一年级大都是十二、三岁的孩子,它们积极、热情,喜欢探究活动,有一定的合作探究意识,学习的方式由偏重机械记忆向偏重理解记忆过渡,但他们热衷于口头表达,在笔头表达上70%的学生存在书写困难。
基于以上分析,我把教学目标确定为:
二、教学目标:
1.了解邻补角、对顶角的概念, 能找出图形中的一个角的邻补角和对顶角;理解对顶角相等的性质,并能运用它解决一些实际问题;
2.学生通过动手画图、观察、推断、交流、归纳小结等数学活动, 初步感受学习几何知识的方法,体会图形语言、文字语言、符号语言三种语言的相互转换;
3.通过探索邻补角、对顶角的定义及对顶角相等的性质和应用,培养学生言之有理、言之有据的语言表达和书写能力;
三、教学重点和难点:
根据学生小学已有的知识、学生的思维特点以及课标要求和教材内容的分析,我认为教学重点是对顶角性质与应用,教学难点是对顶角性质应用几何语言的表达.
四、教学方式与手段
在初中,有效的`数学学习方式不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学习的重要方式,在教学中我采用启发式,引导学生思考,探究,交流,学生在这样的学习过程中对知识进行认识、体会和内化;教学手段则采用多媒体辅助教学。
五、教学过程设计
在学习的过程中,学生始终是学习的主体,老师是学习的组织者、引导者、合作者,本节课以相交线的知识为载体,思维为主线,培养能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生和突破重难点的优势,基于这种理念,我把教学过程设成如下几个环节:
1.回顾知识,感受必要;
2.逐步探究,形成新知;
3.理解概念,巩固新知;
4.实际应用,体会必要;
5.小结回顾,习惯反思;
6.分层作业,获得进步。
下面就突出难点、突破难点作具体的说明:
5.1 回顾知识,感受必要
用几何画板演示学习几何知识简单的过程:点——直线、射线、线段——角,画出角的两边的延长线,引发新的知识——相交线。
意图是:回顾几何知识的学习过程,重温角的概念,利用已有的知识经验去探索,构想新概念,寻求新知识、新思路和新方法
5.2逐步探究,形成新知:
学生画出图形后,提出问题:
问题1:你能描述一下∠AOB与∠1有什么关系吗?你能给这对角起个新名字吗?
问题2:回忆刚才的作图,∠2是怎样形成的?∠2和∠4在位置上有什么特殊的关系吗?你能给∠4和∠2这对角起名吗?这两个角数量上有什么关系呢?
∵∠1与∠4互补,∠1与∠2互补
∴∠4=∠2(同角的补角相等)
即:对顶角相等
设计意图:让学生观察图形,抓住两个角的特点,尝试给出邻补角、对顶角的概念,培养学生数学语言的表达;进一步观察,得到对顶角相等的性质,训练学生由图形语言到文字语言,再到符号语言的三种语言的转换,培养学生几何语言的表达的能力,训练学生语言的表达的准确性;
5.3理解概念,巩固新知;
(1)通过3个识图题,巩固邻补角和对顶角的概念
1.下列各图中∠1、∠2是邻补角吗?为什么?
2.下列各图中,∠1和∠2是对顶角吗?为什么?
3.如图,直线AB、CD相交 于O点,∠AOE=90°,
∠1和∠2是 角;
∠1和∠4互为角;
∠2和∠3互为 角;
∠1和∠3互为 角;
∠2和∠4互为 角.
(2)通过两个例题的学习,体会对顶角相等、邻补角互补的应用。
例1 如图,直线a、b相
交,∠1=40°,求 ∠2、∠3、
∠ 4的度数.
变式1:若∠2是∠1的3倍,求∠3的度数。
变式2:若∠2比∠1大40度,求∠4的度数。
例2 如图,已知直线AB、CD相交于点O,
OA平分∠EOC,并且∠EOC=70°,求∠BOD的
度数.
例1的设置是要学生观察图形,应用知识,要求学生会表达,即:由什么,根据什么,得到什么。变式练习渗透用方程的思想解决几何问题的方法
例2的设置是结合前面的角平分线的知识与新知识组合,再次体会新知识的应用,培养学生思考问题的有序性
5.4实际应用,体会必要;
做一做,试一试
1. 要测量两堵墙所成的∠ AOB的度数,
但人不能进入围墙,如何测量?说明道理
2. 如图所示,有一个破损的扇形零件,
利用图中的量角器可以量出这个扇形零件的
圆心角的度数.你能说出所量角是多少度
吗?你的根据是什么?
用这节课所学的知识解决生活中的现实问题,体会学习对顶角和邻补角的价值,体会数学知识来源于生活又服务于生活的.
5.5小结回顾,习惯反思
为了让学生学完知识后形成反思与小结的良好学习习惯,将新知识纳入已有的知识体系,引导学生从知识上、学习的方法上和后续知识的设想上进行了小结。内容如下:
1.对比邻补角和对顶角的概念,它们有什么异同?
相同点:1都是两条直线相交而成的角;
2都有一个公共顶点;
3都是成对出现的 ;
不同点:1邻补角要有公共边,而对顶角没有公共边;
2两直线相交时,对顶角只有两对, 邻补角有四对
2.今天主要学习邻补角和对顶角的知识,我们从哪几方面研究的?
(1)从两个角位置和两个角数量关系,两方面进行了探究;
(2)从图形、文字、符号语言的转换;
(3)在实际生活中的应用。
3.我们的研究由一个角到两个角,由一条直线到两条直线,图形由简单逐渐变复杂,根据你的学习经验,接下来我们要研究哪些知识?说说你的想法?
期待学生能回答:
(1) 垂直(两条相交直线的特殊位置);
(2) 添加一条直线,研究三线八角;
两直线平行……
5.6分层作业,获得进步。
必做题:第8页习题5.1第1题和第2题,第9页8题写书上;第9页第7题,写本上.
选作题:如图,直线AB、CD交EF
于点G、H,∠2=∠3,∠1=70 °,求∠4的度数.
必做题要求所有的学生完成,选做题为学有余力的学生准备,目的是初步体会对顶角相等在后续知识中怎样应用。
说课到此结束,欢迎大家批评指正!
相交线说课稿2
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对本节课的教学设计进行说明:
一、教材分析
(一)地位、作用
本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)、教学目标
根据学生已有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
五、教学过程
(一)创设情景,引入新课
多媒体显示立交桥、防盗网。
设问:从这些图片得出什么几何图形?学生会指出:相交线。从而引出了课题:相交线。让学生借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的'判定方法。然后让学生依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生的猜想得于肯定,我的做法如下:
(1)我演示教具(自己制作),也给学生操做。
(2)让学生通过量角器测量。
(3)让学生把画好的对顶角剪下来,进行翻折。
(4)引导学生根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生通过观察,比较,找出自己写的和老师写的有哪些异同点。
学生的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生的思考、培养学生的逻辑思维能力以及严谨的治学态度,使学生初步养成言之有据的习惯。
(三)让学生举出生活中对顶角相等的例子
学生可以通过合作性交流、思考、发表见解。
让学生举出生活中对顶角相等的例子,使学生进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。
(四)例题解析
例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。
引导学生先寻找已知角和未知角之间的位置关系,再寻找已知角和未知角之间的数量关系,此题难度不大,让一位学生在黑板上板演。其他同学一起来批改。
(五)习题反馈
为了再次强化对顶角、邻补角的概念及对顶角性质的理解,我适当增加些练习,对于习题,循序渐进提高难度,让不同层次的学生都得于提高,对于趣味题和拓展题,学生通过思考,讨论,寻找规律,让他们进一步感觉“知识来源于实践”,同时学生的思路得于拓展。
(六)、课堂小结
1、这节课学了哪些概念和性质?
2、你还有什么疑惑?
3、谈谈你对本节课的收获。
将本节课所学知识进行回顾和梳理,进一步培养他们归纳,总结能力。
(七)布置作业
我布置了必做题和选做题,为学生提供个性化发展的空间,及时了解学生的学习效果,使学生养成独立思考,反思学习过程的习惯。
六、板书设计(略)
相交线说课稿3
一、教材分析:
1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。
2、活动目标:根据对教材的.研究和分析,综合学生的认知基础,我确定了下列
活动目标:
1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。
2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。
3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。
4)指导学生探究、应用的能力。
3、重难点确定及成因分析:
重点:
理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法
难点:
探索新的画两直线平行的方法,并能简单说理。
分析:
平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。
二、教法、学法本节课
借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。
三、活动准备:
1、 学生自动分组,5—6人一组,自选组长。
2、 尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学
(一) 情景激趣,导入实验5分钟
(二) 动手实验,探究创新25分钟
(三) 联系实际,铸就能力10分钟
(四) 归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。
(一) 情景激趣,导入实验。
1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。
(设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。
2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。
(设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。
相交线说课稿4
开场白:
尊敬的各位考官,上午好,我是面试初中数学的6考生,今天我说课的题目是《相交线》。下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行说课。
一、说教材
《相交线》是人教版七年级下册第五章第一节的教学内容,本节课主要由生活中常见的剪刀入手,通过观察剪刀4个角的关系,抽象出两条相交直线形成的4个角的位置和大小关系,同时理解对顶角,邻补角的意义。本节是在学生学习了直线射线线段、角的基础上展开教学的,同时为后续学习相交线中特殊的垂线以及后续其他类型的角的位置关系打下了基础。起到了承上启下的作用。
在理解教材地位与作用的基础上,结合新课程标准,特制定如下三维教学目标:
1.知识与技能目标:学生通过对相交线的学习,在具体的情景中感受相交线相关角之间的关系,加深对平面图形的认识。
2.过程与方法目标:通过学生的观察与实践,体验相交线的学习过程,并且能够掌握应用相交线所产生的角之间的关系,从而来解决实际问题。
3.情感态度与价值观目标:学生体验数学的美感,从而了解数学,喜欢几何。
根据教学三维目标以及对教材的分析,我将本节课的重点确定为:学生了解两条直线相交后形成的角,探索它们之间的位置关系。而基于学生身心发展特点将本节课的难点确定为:学生掌握两条直线相交后所产生的4个角之间的关系,并且会应用此关系去解决实际问题。
二、说学情
掌握学生的`基本情况,对于把握和处理教材具有重要作用,接下来我来说一下学情。七年级的学生虽抽象思维占优势,但还需感性经验的支持,这一年级的学生活泼、好动,叛逆心理比较强,教师应关注这些特点,多鼓励学生,充分发挥学生的主体作用。
三、说教法
科学合理的教学方法可以使教学活动达到事半功倍的效果,本节课我主要采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣。
四、说学法
教法为学法导航,学法是教法的缩影。因此,本节课的学习以学生的自主探究、合作交流为主要学习方式。学生通过对新知的自主探究,促使学生更深入地去学习数学,乐于探究数学。
五、说教学过程
根据新课标教材及学生特点,为真正实现学生的自主学习,学生参与知识的过程,我将从五个环节展开我的教学。
1.导入
在上课伊始,我会在大屏幕上呈现剪刀剪开布的动态视频,引导学生观察剪刀把手之间的角度和刀刃之间的角度变化关系,学生会发现二者同时变大或变小,此时我会继续提出问题:如果把把剪刀的构造看作两条直线的相交,那大家会发现什么呢?通过学生动手画图,会发现4个角,我会乘胜追击,再次发问:这4个角之间又怎样的位置关系?从而引入课题---相交线。
这样的导入,从学生熟悉的生活情境出发,从剪刀的构造抽象出两条直线相交,一方面能够激发学生的学习兴趣,同时也为接下来的探究做好了铺垫。
2.新授
活动一:初步认知
学生产生探究欲望以后,我会带领学生画出一组两条直线相交,并在黑板上标出所形成的∠1、∠2、∠3、∠4。此时提出问题:∠1和∠2有怎样的位置关系?∠1和∠3呢?学生会发现∠1和∠2有条公共边,∠1和∠3有个公共顶点,此时我会讲授:像这样∠1和∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角;∠1和∠3有一个公共顶点,∠1的两边分别是∠3两边反向延长线,具有这种位置关系的两个角,互为对顶角。同时引导学生同桌之间观察所画出的角,会发现∠1和∠2总是邻补角,∠1和∠3总是对顶角,从而总结规律:不管角如何变化,角的位置关系是不会变的。
接着继续让学生观察,在这4个角中,是否还有其他的邻补角和对顶角,数一数一个角有几个邻补角,预设学生会发现∠4和∠3互为邻补角,∠4和∠1也互为邻补角;∠4和∠2互为对顶角,在学生表述角的关系的过程中,有的学生可能不理解“互为”的意义,单独描述∠4是邻补角,从而出错,我会及时订正学生的错误。并再次抛出问题:可以单独说∠1、∠2、∠3、∠4是领补角或者对顶角吗?学生借助∠4和∠2以及∠3的位置关系,会发现∠4既是∠2的对顶角,又是∠3的邻补角。此时我也会进行总结:邻补角、对顶角是成对出现的,都是相对于两个角而言,是指的两个角的一种位置关系。在相交直线中,一个角的领补角有两个。
活动二:深入了解
学生掌握了邻补角和对顶角的概念,我会继续带领学生探究角的大小关系,让学生运用手中的量角器测量4个角的度数,看看各角有什么关系,并和同桌交流。借助平角的意义,学生不难发现∠1+∠2=180,∠2+∠3=180,我会继续启发学生发现∠1=∠3,在表扬学生的同时,我会继续讲授:按照同样的方法,也可以得出∠2=∠4。为了进一步规范学生的推导过程,我会在大屏幕出示推导的过程:因为∠1与∠2互补,∠2与∠3互补(邻补角定义),所以∠1=∠3(同角的补角相等)。
在此基础之上,我会继续大屏幕出示剪刀剪布的视频,提出问题:在剪刀把手之间的角变化的过程中,这个角的位置关系还会保持吗?为什么?并请同学们动手画一画,想一想。学生会发现,不管角度如何变化,角的位置关系总是不变的。此时,我会进一步总结:对顶角相等,邻补角互补。
活动三:实际应用
接下来是应用阶段,我会在大屏幕出示题目:两条直线相交,已知∠1=50,你能其他几个角的大小吗?这个问题组织学生前后4人为一小组,进行探讨。学生讨论的同时,我也会走下讲台,深入学生探究,对于探究过程出现的问题及时予以指导,最后师生共同总结解题方法:根据邻补角的性质,可得∠2=180-50=130;由对顶角相等可得∠3=∠1=50;∠4=∠2=150。
以上就是本节课的新授过程,通过3个活动层层递进,激发学生学习探究欲望的同时,引导学生自主合作探究学习,发现知识,让学生真正成为课堂的主人。
3.练习
为了更好的帮助学生应用新知,我会大屏幕出示题目,取两根木棍将他们交叉放到一起,并把它们想象成两条直线,说出其中的一些邻补角和对顶角?引导学生和同桌相互说一说,并再次追问,在两根木棍所形成的角中,如果∠a=35,那其他角等于多少呢?引导学生在作业本上独立完成,大屏幕出示结果,全班核对答案。
4.小结
在本环节,我会让学生大声交流讨论的方式互相说一说本节课学了那些新知,总结收获,并进一步总结,帮助学生形成知识体系。
5.作业
最后是布置作业环节,我会让学生完成课后习题1、2,并请学生查看生活中的相交线,并通过测量感受角度之间的关系。
六、说板书设计
最后我来说一下我的板书设计,现在呈现在黑板上的就是我的板书。这样的板书一目了然,突出本节课重点。
结束语:
以上是我说课的全部内容。感谢各位考官的耐心聆听,请问我可以擦掉板书吗?
相交线说课稿5
尊敬的各位评委、亲爱的各位同仁:
我说课的内容是:义务教育课程标准实验教科书数学七年级下册第五章第36页的活动1:你有多少种画平行线的方法。下面我将从以下四个方面对本课时的内容进行说明。
一、教材分析:
1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。
2、活动目标:根据对教材的研究和分析,综合学生的认知基础,我确定了下列活动目标:
1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。
2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。
3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。
4)指导学生探究、应用的能力。
3、重难点确定及成因分析:
重点:理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法
难点:探索新的画两直线平行的方法,并能简单说理。
分析:平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。
二、教法、学法
本节课借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。
三、活动准备:
1、学生自动分组,5—6人一组,自选组长。
2、尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学
(一)情景激趣,导入实验5分钟
(二)动手实验,探究创新25分钟
(三)联系实际,铸就能力10分钟
(四)归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。
(一)情景激趣,导入实验。
1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。(设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。
2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。(设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。
3、教师让学生通过平移三角尺的方法画平行线,学生独立完成,教师对不能独立完成的同学给予指导,并演示课件,展示用平移三角尺的方法画平行线。(设计意图)与后面多种方法画平行线形成一种对比,为下一个活动作好准备。
(二)动手实验,探究创新
1、教师演示课件,展示李强过一点画一条直线的平行线的过程,提出问题,李强画平行线是通过画什么角相等来得到平行线?(设计意图)让学生有目的地观察,激发学生思考,形成学生的理性认识。
2、教师提出问题,你能用其它方法来画平行线吗?要求学生充分利用所学知识,发挥想象力,进行实验操作,小组讨论,体验活动中的各种感受,探究中得到的结论可以是画平行线的方法,也可以是画平行线的'说理过程。(设计意图)动手实践,自主探索与合作交流是学生学习数学的重要方式,让学生在亲身体验和探索中经历“做数学”的过程,能够使学生学习的主体性、能动性、独立性,不断生成、张扬、发展和提升。
3、请小组代表向同学们展示本组的图形,并说明画平行线的方法及其平行的道理,有的同学通过画内错角相等,同旁内角互补或垂直于同一条直线来构造平行线,甚至有的同学会通过画出相等的外错角或互补的同旁外角的方法来得到平行线,教师给予肯定。(设计意图)通过交流,让学生体验解决问题策略的多样性,同时提高了学生的表达能力,给学生获得成功体验的空间。
4、要求学生观察课本“活动1”中张明同学的画法,请学生说出其中的道理,并要求学生根据张明的画法再次产生新的画法,学生讨论后进行交流,教师可演示课件,展示用画菱形的方法得到平行线,并告诉学生在今后学习了四边形的知识后,就能明白其平行的道理。(设计意图)让学生感受到数学知识充满了探索性和创造性,激发了学生的求知欲。
5、教师提出问题,不用作图工具,通过折纸能得到平行线吗?要求学生先看书,教师再演示课件,展示折纸过程,学生模仿制作,并简单说理。(设计意图)让学生觉得数学好“玩”,使学生在“玩”中接受数学,运用数学。
(三)联系实际,铸就能力
1、教师演示课件,依次展示铁轨,木工师傅画平行线,学校跑道、树林,提出问题,它们各自是运用前面哪一种方法画平行线的?学生思考后回答,教师逐一点评。
2、教师提出问题,正值插秧季节,你能帮父母在秧田打行距吗?小组讨论后进行交流,教师演示课件,展示插秧图。(设计意图)让学生了解到数学来源于生活,又服务于生活。
(四)归纳小结,体验感受课堂小结以学生总结为主,既可培养学生的表达能力,又能提高学生的自信心,我设计了两个问题:
1、本节课,你学会了什么?
2、本节课,你最深的感受是什么?
相交线说课稿6
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:
一、教材分析
(一)地位、作用
该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。
(二)、教学目标
根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生们已有的知识基础,依据教学大纲的`要求,确定该节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
五、教学过程
(一)创设情景,引入新课
多媒体显示立交桥、防盗网。
设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生们用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:
(1)我演示教具(自己制作),也给学生们操做。
(2)让学生们通过量角器测量。
(3)让学生们把画好的对顶角剪下来,进行翻折。
(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。
学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。
(三)让学生们举出生活中对顶角相等的例子
学生们可以通过合作性交流、思考、发表见解。
让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。
(四)例题解析
例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。
【相交线说课稿】相关文章:
《相交线》说课稿09-22
《相交线》说课稿 8篇12-16
初中数学《相交线》说课稿02-15
《相交线》初中数学说课稿04-27
相交线教案03-09
相交线教案02-15
相交线教学反思03-12
《相交线》教学反思03-12
相交线与平行线教学反思03-09