当前位置:育文网>教学文档>说课稿> 高中数学说课稿

高中数学说课稿

时间:2023-01-18 09:28:28 说课稿 我要投稿

高中数学说课稿集锦15篇

  作为一名教学工作者,常常需要准备说课稿,说课稿可以帮助我们提高教学效果。那么问题来了,说课稿应该怎么写?下面是小编为大家整理的高中数学说课稿,仅供参考,希望能够帮助到大家。

高中数学说课稿集锦15篇

高中数学说课稿1

  大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

  一 教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  二 教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的.认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

  三 学法:

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四 教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,形成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中数学说课稿2

各位评委、各位老师:

  我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

  一、教材内容分析:

  1.本节课内容在整个教材中的地位和作用。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的。集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

  2.教学目标定位。

  根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

  3.教学重点、难点确定。

  本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

  二、教法学法分析:

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

  三、教学过程分析:

  1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的`问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

  3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。

  4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

  5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

  四、课堂意外预案:

  新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案"。

  1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

  2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

高中数学说课稿3

  尊敬的各位专家、评委:

  下午好!

  我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的'教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (5)小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本

  节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

高中数学说课稿4

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的'教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿5

尊敬的各位评委、各位老师:

  大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计。

  一、教材分析

  1、 教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  (根据具体的课题改变就行了,如果不是热点难点问题就删掉)

  2、 教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  (前三部分用时控制在三分钟以内,可适当删减)

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的.定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、 例题讲解,学以致用

  例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

高中数学说课稿6

  开始:各位专家领导, 好!

  今天我将要为大家讲的课题是

  首先,我对本节教材进行一些分析

  一、教材结构与内容简析

  本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了

  ,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

  二、 教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  1 基础知识目标:

  2 能力训练目标:

  3 创新素质目标:

  4 个性品质目标:

  三、 教学重点、难点、关键

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  重点: 通过 突出重点

  难点: 通过 突破难点

  关键:

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  四、 教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生

  “知其然”而且要使学生“知其所以然”,

  我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:

  ,应着重采用 的教学方法。即:

  五、 学法

  我们常说:“现代的文盲不是不识字的`人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  1、理论:

  2、实践:

  3、能力:

  最后我来具体谈一谈这一堂课的教学过程:

  六、 教学程序及设想

  1、由 引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

  在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  对于本题:

  2、由实例得出本课新的知识点是:

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

  4、能力训练。

  课后练习

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  7、板书。

  8、布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

  结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

  注意时间掌握

  六、注意灵活导入新知识点。

  电脑课件

  使用投影

  根据时间进行增删

高中数学说课稿7

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出此刻职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等资料,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的'相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考资料。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养本事及思想教育等方面的要求:我制定了如下教育教学目标:

  (1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2)本事目标:培养学生自主学习、综合归纳、数形结合的本事。

  (3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  大部分学生数学基础较差,理解本事,运算本事,思维本事等方面参差不齐;同时学生学好数学的自信心不强,学习进取性不高。针对这种情景,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地理解并提高学生的学习兴趣和进取性,很好地突破难点和提高教学效率。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生进取思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生经过分析、探索、得出对数函数的定义。

  (3)自主性学习法:经过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情景,找出未掌握的资料及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种本事。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节资料有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的本事。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望明白问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a》0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a》0且a≠1.从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于理解。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,经过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都能够根据函数的解析式,列表、描点画图。再研究一下,我们还能够用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x》0,所以可取x=···,,,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

  方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就能够得到y=logax.的图象。学生动手做实验,先描出y=2x的'图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,能够加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样能够充分调动学生自主学习的进取性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a》1与0《a《1两种情景列出对数函数图象和性质表,()体现了从"特殊到一般"、"从具体到抽象"的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生比较着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新本事有帮忙,学生易于理解易于掌握,并且利用表格,能够突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:经过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的本事,经过这个环节学生能够加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师能够了解学生对知识掌握的情景。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,所以,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业:

  (1)完成P782、3题

  (2)当底数a》1与0《a《1时,底数不一样,对数函数图象有什么持点?

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

高中数学说课稿8

  一、教材分析

  1· 教材的地位和作用

  在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。

  y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

  ⒉教材的重点和难点

  重点是对周期变换、相位变换规律的理解和应用。

  难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

  ⒊教材内容的安排和处理

  函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

  二、目的分析

  ⒈知识目标

  掌握相位变换、周期变换的变换规律。

  ⒉能力目标

  培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

  ⒊德育目标

  在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

  ⒋情感目标

  通过学数学,用数学,进而培养学生对数学的兴趣。

  三、教具使用

  ①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

  ②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

  四、教法、学法分析

  本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

  以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

  五、教学过程

  教学过程设计:

  预备知识

  一、问题探究

  ⑴师生合作探究周期变换

  ⑵学生自主探究相位变换

  二、归纳概括

  三、实践应用

  教学程序

  设计说明

  〖预备知识

  1我们已经学习了几种图象变换?

  2这些变换的规律是什么?

  帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

  〖问题探究

  (一)师生合作探究周期变换

  (1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin

  x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。

  (2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?

  (二)学生自主探究相位变换

  (1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

  (2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。

  设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。

  设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。

  师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。

  〖归纳概括

  通过以上探究,你能否总结出周期变换和相位变换的一般规律?

  设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。

  〖实践应用

  (一)应用举例

  (1)用五点法作出y=sin(2x+)一个周期内的简图。

  (2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换

  (3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。

  (4)归纳总结

  从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.

  (二)分层训练

  a组题(基础题)

  如何完成下列图象的变换:

  ①y=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  b组题(中等题)

  如何完成下列图象的变换:

  ①y=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  ③y=sinx →y=sin(3x+1)

  c组题(拓展题)

  ①如何完成下列图象的变换:

  y=sinx →y=sin(3x+1)

  ②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。

  让学生用五点法作出这个图象是为了验证变换方法是否正确。

  给出这个问题的用意是开拓学生的'思维,让学生从多角度思考问题。

  这个步骤主要目的是培养学生的探究能力和动手能力。

  这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。

  a组题重在基础知识的掌握,

  由基础较薄弱的同学完成。

  b组比a组增加了第③小题,

  重在对两种变换的综合应用。

  c组除了考查知识的综合应用,

  还要求学生对新问题进行探究,

  有较大难度,适合基础较好的

  同学完成。

  作业:

  (1)必做题

  (2)选做题

  作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。

  六、评价分析

  在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。

  调节与反馈:

  ⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。

  ⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。

  附:板书设计

高中数学说课稿9

  各位评委:下午好!

  我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  (一)教材的地位和作用

  《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。

  (二)、学情分析

  通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:

  知识层面:学生在已初步掌握了 。

  能力层面:学生在初步已经掌握了用

  初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的.兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.

  (三)教学课时

  本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:

  知识与技能:

  过程与方法:

  情感态度:

  (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)

  在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。

  三、重难点分析

  重点确定为:

  要把握这个重点。关键在于理解

  其本质就是

  本节课的难点确定为:

  要突破这个难点,让学生归纳

  作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学--建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。

  五、说教学过程

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景………………….

  (二)比旧悟新………………….

  (三)归纳提炼…………………

  (四)应用新知,熟练掌握 …………………

  (五)总结…………………

  (六)作业布置…………………

  (七)板书设计…………………

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢

  著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?

高中数学说课稿10

  1、教学目标:

  一、借助单位圆理解任意角的三角函数的定义。

  二、根据三角函数的定义,能够判断三角函数值的符号。

  三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

  四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

  2、教学重点与难点:

  重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

  难点:任意角的三角函数概念的建构过程。

  授课过程:

  一、引入

  在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

  二、创设情境

  三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

  学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

  问题:

  1、锐角三角函数能否表示成第二种比值方式?

  2、点P能否取在终边上的其它位置?为什么?

  3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

  练习:计算的各三角函数值。

  三、任意角的三角函数的定义

  角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

  尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

  评价学生给出的定义。给出任意角三角函数的定义。

  四、解析任意角三角函数的定义

  三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

  对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

  五、三角函数的应用。

  1、已知角,求a的三角函数值。

  2、已知角a终边上的一点P(-3,-4),求各三角函数值。

  以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

  1、已知角如何求三角函数值?

  2、利用角a的.终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

  3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

  4、探究:三角函数的值在各象限的符号。

  六、小结及作业

  教案设计说明:

  新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

  首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

  其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

  再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

高中数学说课稿11

  尊敬的各位专家,评委:

  上午好!

  根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。

  一、教材分析

  地位和作用:

  《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。

  本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。

  二、学情分析

  1、学生已熟悉掌握______

  2、学生的认知规律,是由整体到局部,具体到抽象发展的。

  3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力

  4、学生层次参差不齐,个体差异还比较明显

  三、教学目标分析

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  1、知识与技能:

  2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。

  3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。

  教学重点:

  难点:

  四、学法、教法分析

  (一)学法

  首先,通过自学探究,培养学生的分析、归纳能力,提高学生合作学习的能力,学生课堂中体现自我,学会寻找问题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开。

  其次,教学过程中,我想适时地根据学生的“最近发展区”搭建平台,充分发挥“教师的主导作用和学生的主体地位相统一的教学规律”,

  从学生原有的.知识和能力出发,指导学生学会观察、分析、归纳问题的能力。

  学生只有不断地解决问题、产生成就感的过程中,才能真正地提高学习的兴趣,也只有这样才能“学”有新“思”,“思”有新“得”。

  (二)教法

  数学教育家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的发展规律、性质和联系。”根据学生的认知特点和知识水平,为落实重点、突破难点,本着以人为本,以学为中心的思想,本节课我将采用启发式、合作探究的方式来进行教学。运用多媒体演示辅助教学的一种手段,以激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。

  五、教学过程分析

  1、创设情境,引入问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  2、发现问题,探究新知。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历

  “数学化”、“再创造”的活动过程.

  3、深入探究,加深理解。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  4、当堂训练,巩固提高。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  5、小结归纳,拓展深化。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

  6、作业设计

  作业分为必做题和选做题。

  针对学生能力和水平的差异,进行分层训练,在所有学生获得共同知识基础和基本能力的同时,让学有余力的学生将学习从课堂延伸到课外,获得更大的能力提升,这体现新课改理念,也是因材施教的教学原则的具体运用。

  现代数学教学观和新课改要求教学能从“让学生学会”向“让学生会学”转变,使数学教学真正成为数学活动的教学。所以,本节课我们不仅仅是单纯的传授知识,而更应该重视对数学方法的渗透。从熟悉的知识出发,学生自主探索、合作交流激发学生的学习兴趣,突破难点,培养学生发现问题、解决问题的能力

  六、板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;突出本节重难点,能指导教师的教学进程、引导学生探索知识,启迪学生思维。

  我的说课到此结束,敬请各位专家、评委批评指正。

  谢谢!

高中数学说课稿12

  各位评委,老师们:大家好!

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一说教材

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的'概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二说教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三说教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段———提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

  ①向量与是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形的充要条件是=;

  ⑤模为0是一个向量方向不确定的充要条件;

  ⑥共线的向量,若起点不同,则终点一定不同.

  [练习2]下列命题正确的是( )

  A.a与b共线,b与c共线,则a与c也共线

  B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

  C.向量a与b不共线,则a与b都是非零向量

  D.有相同起点的两个非零向量不平行

  Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

  在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

  例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

  具体教学安排如下:

  (1)分析解决问题

  先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

  (2)归纳解题方法

  主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相

  等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

  Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

  本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

  具体的教学安排如下:

  (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

  在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

  类比,数形结合,等价转化等进行强调。

  (2)布置课后作业

  阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。

高中数学说课稿13

  一、教材地位与作用

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  二、学情分析

  作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教法学法分析

  教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的`尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  四、教学过程

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定

  理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学说课稿14

  【教材分析】

  1、本节教材的地位与作用

  本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。

  2、教学重点

  会求闭区间上连续开区间上可导的函数的最值。

  3、教学难点

  高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的.难点是理解确定函数最值的方法。

  4、教学关键

  本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。

  【教学目标】

  根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

  1、知识和技能目标

  (1)理解函数的最值与极值的区别和联系。

  (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。

  (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。

  2、过程和方法目标

  (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。

  (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。

  (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。

  3、情感和价值目标

  (1)认识事物之间的的区别和联系。

  (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。

  (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

  【教法选择】

  根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。

  本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

  【学法指导】

  对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。

  【教学过程】

  本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。

高中数学说课稿15

  一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二.目标分析:

  教学重点.难点

  重点:集合的含义与表示方法.

  难点:表示法的恰当选择.

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性.互异性.无序性;

  (4)会用集合语言表示有关数学对象;

  2.过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

  (2)让学生归纳整理本节所学知识.

  3.情感.态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性.

  三.教法分析

  1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.

  2.教学手段:在教学中使用投影仪来辅助教学.

  四.过程分析

  (一)创设情景,揭示课题

  1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流.与此同时,教师对学生的活动给予评价.

  2.活动:(1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在xxxx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学xxxx年9月入学的高一学生的全体.

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.

  一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

  4.教师指出:集合常用大写字母A,B,c,D,...表示,元素常用小写字母...表示.

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流.

  让学生充分发表自己的建解.

  3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.[来源:Z,xx,k.com]

  如果是集合A的元素,就说属于集合A,记作.

  如果不是集合A的元素,就说不属于集合A,记作.

  (2)如果用A表示"所有的.安理会常任理事国"组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

  (3)让学生完成教材第6页练习第1题.

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

  6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题.

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

  (五)归纳小结,布置作业[来源:Zxxk.com]

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题.

  2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.

  五.板书分析

  PPT

  集合的含义与表示

  定义例1

  集合×××××××

  ××××××××××××××

  元素×××××××

  ×××××××例2

  元素与集合的关系×××××××

  ××××××××××××××

  作业××××××××××××××

【高中数学说课稿】相关文章:

高中数学《集合》说课稿07-22

高中数学说课稿07-09

高中数学说课稿03-21

高中数学数列说课稿04-12

高中数学《向量》说课稿范文02-15

高中数学说课稿范文11-02

关于高中数学说课稿11-26

高中数学说课稿7篇02-12

高中数学说课稿(15篇)02-17

高中数学说课稿四篇04-23