八年级数学说课稿13篇
作为一位不辞辛劳的人民教师,很有必要精心设计一份说课稿,编写说课稿是提高业务素质的有效途径。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的八年级数学说课稿,仅供参考,欢迎大家阅读。
八年级数学说课稿 篇1
高尔基说:“好奇是了解的开端和引向认识的途径。”为此,我设计了两个小实验引入新课,让学生从身边的实例入手可以感受到科学就在身边。
1、要让静止的书(文具盒)运动,该怎么办?
2、停止用力,又会如何呢?(学生实验后上台演示)
误导学生:物理受力就会运动,不受力就停止。
得出谬论:物体运动要靠力维持。
教师实验演示:推一辆小车,撤去推力,小车没有立即停下。
得出结论:物体运动不需要力维持。
观察学生表情,出示亚里士多德和伽利略的两种截然不同的观点,激发
学生探究的兴趣,活跃课堂气氛。这样的实验学生既熟悉又好奇,带着想知道这是为什么的悬念进入新课,可以调动学生的探索兴趣。
第二环节:感受活动,总结观点(约3分钟)
让学生用力推书,圆珠笔,铅笔盒,小车,书包等,然后撤去推力,物体会慢慢停下来。让学生体会物体运动不需要力维持,运动的物体停下来是由于受到阻力的缘故。本环节的设计意图是让学生通过自身感受体验,观察现象,并提出自己的论点,培养分析问题的能力和表达能力。
第三环节:合作交流,实验探究(约20分钟)
本环节设计三个步骤:
第一步:用Flash展示实验,用严格的推理方法让学生感受伽利略观点是正确的。通过回顾历史培养学生严谨的科学态度,通过形象的Flash演示,使学生对伽利略理想实验有一个初步的了解,为接下去的分组实验探究做一个铺垫。
第二步:学生分组探究阻力对物体运动的影响。
教师出示以下问题,让学生结合问题学习教材,小组自选器材完成实验。
1、我们实验目的是什么?实验中观察什么?
2、几种不同的物体铺在木板上,作用是什么?
3、实验中怎样保证小车开始时的速度相同?
4、实验中,如果我们把表面换成更光滑的玻璃,小车的运动情况会有什么变化吗?
5、如果表面比玻璃更光滑呢?
6、如果表面绝对光滑,小车会怎样运动?
7、如果静止的物体不受力,会怎样?
通过这些难度不同的问题引导,让学生相互讨论,交流,自主制定方案,完成实验,不仅使他们印象深刻,还培养他们的实验探究能力。同时让学生知道观察和实验是学习物理的基础,对于不确定的观点应该通过实验来验证。
第三步:用Flash再次展示伽利略的理想实验,对学生的实验过程进行肯定和总结。
教师强调以下几点:
1、亚里士多德的观点“运动要靠力来维持”是错误的,伽利略的观点“运动不需要力来维持”是正确的。运动的物体之所以会渐渐停下来是受到了阻力的作用,所以说,力改变了物体运动状态,而不是维持物体的运动状态。
2、理想实验是建立在实验的基础上的合力推理,不是凭空想象。伽利略正是有敢于坚持真理,不迷信权威和对科学的执着精神,才完成了自己的理想实验,推翻了亚里士多德的长达2000年的错误理论,为后来笛卡尔等科学家的研究奠定了基础。
通过演示和总结,对前面提出的观点进行判断,为学生确立正确的观点。结合伽利略的实验进行思想教育,培养学生坚持真理、勇于探究的科学精神。
第四环节:科学推理,得出新知(约5分钟)
学生通过实验和观察动画能够得出:如果表面绝对光滑,运动物体受到的阻力为零,物体将以恒定不变的速度运动下去。
提问:运动的物体不受阻力时将永远运动下去,那静止的物体不受阻力时会怎样呢?
学生通过讨论能够得出:静止物体在不受力时,将保持静止状态。
教师讲解:为解决力与运动的关系,牛顿在伽利略、笛卡尔等前辈的研究基础上,提出牛顿第一定律:
引导学生得出:我们在科学正确的实验基础上,进行合理的推理,最终得出可信的结论,即一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态,这就是牛顿第一定律。同时教给学生一种实验+推理的研究方法。教师再通过展示图片使学生了解任何科学的发展都需要一个漫长的过程,而学生通过实验得出的观点和探究过程与伟大科学家是一致的,从而获得了成就感,增强了探究的自信心,为终身学习打下基础。
第五环节:剖析定律,强化理解(3分钟)
如何把牛顿第一定律理解透彻,一直是很多学生学习的大难题,通过对这以下三个问题的思考,可以很好的突破本节难点。
1、牛顿第一定律的适用范围是什么?
2、牛顿第一定律的适用条件有哪些?
3、力和运动是什么关系?
解释牛顿第一定律时主要强调“一切”、“不受外力”、“总保持”的含义,并强调牛顿第一定律的理想性。这样,使学生加深了对牛顿第一定律的理解,并能准确的表述出牛顿第一定律。
用视频冰球比赛展示牛顿第一定律的理想性,强调现实生活中不存在。并阐述实验推理法的应用。
第六环节:应用迁移,巩固提高(5分钟)
1、回归课本
分析课本开头三幅图片,分析运动的物体为什么会停下来?
2、情景讨论
在体育上,我班同学都参加了哪些项目?现在请大家思考,假如你正在和同学赛跑时,突然,所有的力都消失了,会出现什么情形呢?
3、牛顿第一定律告诉我们,物体不受力时都有保持静止或匀速运动不变的性质。我们周围的物体都受到力的作用,是否也有这种性质呢?你能举个例子说明吗?
本环节通过理论联系实际使知识得到升华,通过练习,可以让学生更深刻地理解和掌握牛顿第一定律,第3题为下一节的惯性学习做好铺垫。
第七环节:课堂总结,布置作业(约4分钟)
让学生谈谈本节课的收获和困惑。用5分钟的时间对本节课的知识点进行回顾、梳理,这样既可以加深学生对所学知识的理解又可以在学生的头脑中建立一个知识点的.整体印象。
布置作业:
1、书面作业::
(1)2008年奥运会即将在北京开幕,我国运动员将奋力拼搏,为国争光在下列比赛项目中,有关运动和力的说法中不正确的是( )
A 头球攻门,说明力可以改变物体的运动状态;
B用力拉弓,说明力可以改变物体的形状;
C用力向后划水,皮艇才能前进,说明物体间力的作用是相互的;
D百米赛跑时,很难停下,是因为运动员的惯性消失了。
(2)用下图所示的实验装置研究运动和力的关系。
(1)每次都让小车从同一个斜面的( )位
置由静止开始滑下 ,是为了使小车在滑到斜面底 端时具有相同的速度。
(2)比较图中小车在不同表面滑行的最大距离,可以得出:在初速度相同的条件下,水平面越光滑,小车受到的摩擦力越( ),小车运动的越( )。
(3)在此实验的基础上进行合理的推理,可以得到:运动物体不受外力时,它将( )。
(4)由此,我们可以得出,力的作用不是维持物体运动状状态,而是( )
物体的运动状态。
2、实践作业:
(1)上网查寻亚里士多德、伽利略、牛顿的相关资料,了解他们在物理学方面作出的贡献。
(2)以“假如力消失了,我们的生活会怎样?”为题,写一篇小论文。
本环节的设计意图有两个:通过书面作业,加深对所学内容的巩固。学生通过上网查资料进一步理解牛顿第一定律的含义;小论文的写作,需要学生深入生活,体验生活,同时通过实践作业的完成可以形成对知识的复习回顾。
四、板书设计
为了突出重点,形成完整的知识体系,我设计的板书如下:
第五节 牛顿第一定律
五、课堂反思
本节课的设计从学生的认知规律出发,力求教给学生探求知识的方法,教会学生获取知识的本领,通过“牛顿第一定律”的学习让学生经历主动参与,积极探求,创造性的发现物理知识的过程,力求让学生全身心的投入学习活动之中。
六、结束语
以上是我对“牛顿第一定律”第一课时教材的认识和理解,由于本人水平有限,上面过程肯定有许多缺点和漏洞,希望各位评委和老师们多多批评指正,谢谢!
八年级数学说课稿 篇2
一、教材分析
1、教材的地位及作用
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
教学重点:理解并掌握分式的基本性质
教学难点:灵活运用分式的基本性质进行分式化简、变形
3、教材的处理
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用。最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:
1)了解分式的基本性质
2)能灵活运用分式的基本性质进行分式变形
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析
1、教学方法
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段
我所采用的教学手段是多媒体辅助教学法。
四、程序分析
活动1创设情境,引入课题
教师提出问题,下列分数是否相等?可以进行变形的'依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。
在活动中教师要关注:
(1)学生对学过的知识是否掌握得较好;
(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2类比联想,探究交流
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3例题分析运用新知
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。
在活动中教师要关注:
(1)学生能否紧扣“性质”进行分析思考;
(2)学生能否逐步领会分式的恒等变形依据。
(3)学生是否能认真听取他人的意见。
活动4练习巩固拓展训练
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。
在活动中教师要关注:
(1)大部分学生能否准确、熟练完成任务;
(2)学生能否用数学语言表述发现的规律;
(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
活动5 小结评价布置作业
学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:
(1)学生对本节课的学习内容是否理解;
(2)学生能否从获取新知的过程中领悟到其中的数学方法。
设计意图:
学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。
八年级数学说课稿 篇3
各位评委,大家好!
今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。
一、说教材
1. 内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四、说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的.问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
五、说教学过程
(一)创设情境,发现新知
首先提出问题
问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?
【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。
问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表。
R/Ω 20 40 60 80 100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
【设计意图及教法说明】
因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。
问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?
【设计意图及教法说明】
学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。
问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
【设计意图及教法说明】
问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。
(二)合作探究,获得新知
1.出示问题
想一想,你还能举出类似的例子吗?
【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。
2.启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数自变量不能为0!
反比例函数的一般形式:y= k/x(k为常数,k≠0)
反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)
【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。
(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。
1.基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。
(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
③y是x的反比例函数,下表给出了x和y的一些值:
a.写出这个反比例函数的表达式;
b.根据函数表达式完成下表。
表略。
【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。
2.能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。
(2)y=5xm是反比例函数,求m的值。
【设计意图及教法说明】
问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。
(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。
(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)
【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。
(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。
选做题:已知y与2x成反比例,且当x=2时,y=-1,求:
(1)y与x的函数关系式。
(2)当x=4时,y的值。
(3)当y=4时,x的值。
【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。
八年级数学说课稿 篇4
一、教材分析
直角三角形的性质是初二年级上半学期第19章第8节的内容,共分为3个课时,一为直角三角形两个锐角互余和斜边上的中线等于斜边的一半两个性质定理;二为直角三角形30度所对的边等于斜边的一半及其逆定理,三为综合训练。本堂课为第一课时的内容。在此之前学生已经学习过一般三角形的相关性质如内角和性质、外角性质、三边关系以及特殊三角形如等腰三角形和等边三角形的性质和判定,以及三角形全等等足够的知识基础。本课为研究特殊三角形——直角三角形的入门,是以后综合图形证明的一个基础。
二、学生分析
总体来说,绝大多数学生处于中等偏下水平,对几何证明的学习或多或少有些心里障碍,尤其是证题思路的形成,但是仍处于对于新事物好奇的阶段,所以可以通过老师课堂上得有效引导和阶梯是铺垫提示让学生学有所成。
三、教学目标
1、掌握直角三角形两个锐角互余和斜边上的中线等于斜边的一半这两个性质定理,并能初步运用其解决简单的几何问题;
2、经历定理推导过程,体会实验—猜想—论证的完整过程。
3、通过探究直角三角形的性质,培养学生的学习兴趣和严谨的学习态度。
四、教学难点、重点
1、经历“直角三角形斜边上的中线等于斜边的一半”这一性质定理的推导过程
2、直角三角形两个性质定理的简单运用
五、教学设计过程
(一)性质1的引入和训练
1、利用2分钟预备铃学生朗读自己整理的已经学过的有关三角形的知识点;
2、开门见山,提问直角三角形两个锐角的关系,得出性质1:直角三角形两个锐角互余;重点强调几何书写,让学生了解在证明书写时如何规范应用这个性质
3、性质1的应用,由易入难进行训练,准备习题如下:
1、在直角三角形中,有一个锐角为480,那么另一个锐角度数为
2、等腰直角三角形的一个锐角等于__________
3、如图,在Rt△ABC中,∠ACB=900,CD是斜边AB上的高,
那么图中有几个直角三角形?有几组角互余?有哪些角相等?
第1小题是最简单的应用;
第2小题为后面性质2的推导过程中特殊的直角三角形——等腰直角三角形中斜边上得中线等于斜边的一半打个小基础,而且这也是一个常识知识。在两题的训练中,帮助学生熟悉性质1;
第3小题是课本上得例题,通过他训练学生的思维和规范书写,同时对这个常规的母子三角形进一步加深印象。
(二)性质2的探索和简单应用
首先从等腰直角三角形这一特殊的直角三角形入手,学生容易获得斜边上的中线等于斜边的一半的结论,考虑到班级的部分学生基础并不是很好,所以这里设计了个问题——图中有几个等腰三角形?启发学生得出结论。然后通过提问是否在一半直角三角形中也能获得这个结论,引发学生的思考。然后鼓励学生动手测量实验获得猜想在组织学生讨论引导他们用演绎证明的方法严谨的推导出直角三角形的性质2。这部分的证明是整堂课的难点,需要老师的有效引导和启发,最后性质的得出也让学生感受到从特殊到一般思想方法和实验—猜想—论证的完整定理推导过程。同时通过证明的过程进一步学习添加辅助线的技巧,学会用运动的眼光来看待几何证明问题,如果时间来得及想介绍下同一法的证明方法,为一部分好的学生开阔一下思路。
归纳出定理2后同样给出几何规范书写,强调使用条件有2个,一是直角三角形二是斜边的中线。
然后准备由易到难的习题练习如下:
(1)在直角三角形中,斜边长6,那么该三角形的斜边上的中线长为________.
在直角三角形中,斜边上的中线为6,那么该三角形的斜边长为_________
(2)直角三角形斜边上得中线和高分别是8和5,则这个三角形的面积是_______
(3)在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________.
(变式:在△ABC中,∠ACB=9
0°,CE是AB边上的中线,若∠A=30°,那么与CE相等的线段有_______________)
第1题是基础训练;
第2题进一步提高思维,知道三角形面积需要知道一边和这边上得高,高已知就需要确定这一边的长,再通过直角三角形斜边上的中线这个条件获得这一边的长从而解决问题,培养学生从题目中分析出有用的信息;
第3题不难,但是没有图形,需要学生自己根据题意画出草图,在几何学习过程中图是最重要的环节之一,而我们的学生对于没有图的题需要自己画图的题存在不小的问题,所以利用这个题训练他们的正确画图能力。
变式把一个锐角改成30度,也是为了下一节中直角三角形中30°的角所对的边和斜边之间数量关系讨论做一个铺垫,起到承上启下的作用。
(三)巩固提高训练
这里通过2个习题进行对于定理2的应用训练,同时关注书写的`规范
1、【例2】如图,在△ABC中,AD⊥BC,E、F分别是AB、AC上的中点,
且DE=DF.求证:AB=AC
2、已知:如图,BF、CE分别是△ABC的高,N、D分别是EF、BC的中点,分别联接ED、FD。求证(1)ED=FD(2)DNEF
第二题的原题中没有2个小问题,而是直接提问DNEF,这里可根据学生实际的情况考虑是否给出第一小问题作为铺垫。在引导学生进行证明的过程中帮助学生去找题中得已知条件,看有没有直角或垂直的条件,有没有中点的条件,再结合看是不是存在直角三角形斜边上得中线情况。尤其是当图形复杂时要耐得下心来寻找关键的条件。
(四)课堂小结
让学生说说自己这堂课的收获,学生可能对2个定理影响深刻,老师要从分析方法上提点学生注意辅助线的添加方法和图形中找有用的条件的方法
(五)作业布置
不把练习册直接拿来用,而是根据学生的情况进行增减的作业布置,让一般的学生牢牢掌握基础,让好的学生思维获得进一步提高,分层作业的设置尽量考虑所有学生。
(六)作业指导
对于回家作业进行有针对性的简要分析、训练思维,帮助学生加强分析题得能力,同时帮助部分基础比较弱得同学理清思路
附:
19.8(1)作业单
一、任务单上未完成的作业完成
二、练习册上部分习题
1、在直角三角形中,有一个锐角为380,那么另一个锐角度数为
2、在Rt△ABC中,∠C=900,∠A-∠B=300,那么∠A=,∠B=
3、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E是边AC的中点,DE=2cm,∠BCD=20°,那么AC=_______cm,∠A=_______°
4、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________
5、已知:如图,在△ABC中,∠B=∠A,CD⊥BC,CE是边BD上的中线
求证:AC=BD
6、已知:如图,AD、BE相交于点C,AB=AC,EC=ED,M、F、G分别是AE、BC、CD的中点。
求证:(1)AE=2MF
(2)MF=MG
7、已知Rt△ABC和Rt△ADC有公共的斜边AC,点M是AC的中点,点N是BD的中点,求证直线MN垂直平分线段BD
【说明】1、2、4题是两个性质定理的基础训练,第3题结合图形,考察学生对于图形的简单分析能力,利用已知条件和掌握的知识技巧解题。
第5题通过证明线段的倍分问题,培养学生“倒推”的分析能力,通过角的转化,等角对等边等知识的综合运用,同时考察学生对上课复习的如何证明线段倍分关系的方法进行考察。
第6题乍一看图形比较复杂,其实只需要需找到图形中得2个直角三角形即可解决问题,这里需要运用到等腰三角形的三线合一性质的运用,难点在于克服图形复杂造成的无力感,这是很多学生的一个通病,看到图形复杂就先一步在心里上给自己设置障碍,通过此题鼓励学生细心的分析题,用已知条件创造中间结论并结合图形解决问题。
第7题其实是课堂上巩固提高训练部分中第2题的变式,只需要添加2条辅助线就和那一题一样了,考察学生是不是能看透图形的本质已经相关问题的迁移以及辅助线的添加技巧。
三、选作作业:书上课后第4题、练习册最后一题
这是需要添加辅助线,构造出直角三角形斜边上得中线从而利用新学的知识解决的问题,作为选做题一是之前的作业量对大部分同学而言足够了,但是对个别好的学生还是学有余的,无论是时间上还是在思维训
练上,这两道题讲会的后面的课堂上老师做引导再作为全班的作业,这里可以让一些学生先自行完成,最好在后面的课堂上由此部分学生来点播其他的同学。
八年级数学说课稿 篇5
这一节课,是依据苏科版新课程实验教材,八年级数学上册第四章实数,第二节《立方根》的内容设计的。本节内容承接了《平方根》的教材编排模式,与平方根一节一起给学生建立‘开方’的运算模式,为下一节《实数》概念的建立和运算模式的建立打基础。所以,说本节课具有‘承前启后’的作用,应当是合适的。
说课标
数学课程标准对“实数”一章中关于本节知识的要求是:①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。②了解立方与乘方会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。因而,本节确立的教学目标,在知识技能方面要求了解立方根的概念,用三次根号表示一个数的立方根。方法方面用类比法学习立方根及开立方运算。情态价值方面则发展求同存异思维。
(一)学习目标:
1 、知识目标:
(1)理解并掌握立方根的概念,会用符号表示一个数的立方根。
(2)能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
(3)理解并掌握正数、负数、0的立方根的特点。
(4)区分立方根与平方根的不同。
2 、能力目标:
(1)通过学习立方根,培养学生理解概念并用定义解题的能力。
(2)通过用类比的方法探寻出立方根的概念、表示方法及运算。
(3)通过经历探索和合作交流,归纳总结出平方根与立方根的异同。
(二)学习重、难点:
1、学习重点:立方根的概念和求法。
2、学习难点:理解立方根的性质;比较立方根与平方根的异同。
说教学法分析
当前高效课堂的主流就是培养学生的能力,使学生学会学习,学会解决实际问题。在学习过程中让学生自主探索、观察猜测、合作交流、分析推理、归纳总结,充分体现学生的主体地位,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
说教学重点
了解立方根的概念性质,会用概念解题。
说教学难点
应用时的符号问题
教具准备
鉴于需要类比教学,容量大,因此采用多媒体课件教学
说教学流程
在教学过程中,我采用班班通辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
1、创设情境复旧导新
在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题引入学生易于接受。体现了数学源于生活。
再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。初步体会类比思想
2、启发诱导探索新知
首先出示学习目标,让学生明白本节课我要学什么,怎样学,达到什么要求。接下来结合导学案和教材,导读自学,自主探究。设计意图:学生自学教材通过自学感悟理解新知,体现了学生的自主学习意识。
最后,我通过三个活动将新知细化
活动一:立方根的.概念
设计意图:使学生学会“文字语言”与“符号语言”这两种表达方式。整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
活动二:立方根的性质
这是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,安排一个口答题,求一些具体数的立方根,在学生经过观察、思考并有了一些感性认识之后,自己总结出有关正数、0、负数立方根的特点,其后,通过合作探究学生归纳总结出平方根与立方根的异同。强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。
3、引导探究延伸新知
活动三:求一个数的立方根
(1)表示各数的立方根(定义的理解)
(2)求下列各式的值(概念、性质、公式的综合运用)
设计意图:组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果。使学生从中体会到从特殊到一般的数学思想,同时,让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
4、归纳小结巩固新知
设计意图:引导学生对知识要点进行总结,梳理学习思路。
5、课堂达标拓展延伸
设计意图:此环节体现出课堂的价值不仅是让学生学会知识,检验新知学习效果,而且培养学习能力,提升素质,达到了兵教兵,兵强兵的目的。
说板书设计
立方根
1、一个数a的立方根可以表示为:
读作:三次根号a,其中a是被开方数,3是根指数,不能省略。
2、立方根的性质:
(1)正数的立方根是正数;
(2)负数的立方根是负数;
(3)0的立方根是0。
3、比较立方根与平方根的异同
4、黑板右边学生板演、展示。
八年级数学说课稿 篇6
一说教材
《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。
二说教学目标
根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:
1掌握等腰三角形的性质
2知道等腰三角形的性质的推理过程
3会灵活运用等腰三角形的性质解决相关的'数学问题
三 说教学重、难点
结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。
由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。
四 说教法和学法
本节课我采用的教法是启发式教学法、动手操作法。
学生的学法是:自主探究法、合作讨论法。
五说教学过程
本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。
1 复习导入
通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。
2探究新知
在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.
3理解与运用
为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。
4强化巩固
在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。
5小结
设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。
本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。
八年级数学说课稿 篇7
一、教材分析
(一)教材的地位和作用
现实世界中,四边形装点着我们的生活。宏伟的建筑物、铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝处处都有平行四边形的身影。本节课是在学生已掌握了全等三角形、四边形的有关知识和平行线的性质的基础上学习的,既是已学知识的综合运用,更是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。通过本节教学,把研究平行四边形转化为全等三角形的方法向学生渗透“转化”的数学思想,探究平行四边形的性质过程提高学生分析、解决问题的能力。因此,本节课无论是在知识的学习,还是对学生能力的培养上都起着十分重要的作用。
(二)教学目标知识教学点目标:使学生理解并掌握平行四边形的概念及性质,并能运用这些知识进行有关的证明与计算。从而解决简单的实际应用问题。
能力教学点目标:在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想。
情感、态度、价值观目标:通过探究学习,增强发现问题、解决问题的意识,养成合作交流的习惯。通过列举现实生活中的平行四边形形状的实例,使学生明白几何图形来源于生活,学习几何是为了解决实际问题,培养学生科学的学习态度。
(三)教学重点、难点与课时设计教学重点:平行四边形的定义及性质。教学难点:平行四边形性质的理解。
二、说教法
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法
1、根据自主性和差异性原则,让学生“观察→猜想→概括→验证→交流→应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。
2、学生一题多解,并及时引导学生小结方法,克服思维定势。例题讲解采取分解图形的方法,使学生体验并学习“转化”的数学思想。
3、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、说教学过程
教学程序设计:教学流程图
展概性性课示念质质外
图的的的作片形猜巩业揭成想固自
示与与与我课讲验应检题解证用测
教学过程:
(一)、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?
设计意图:从学生身边熟悉的事物中选取学习素材,易于学生接受,激发学生的学习兴趣。同时,让学生明确本节课的学习内容。
(二)、开启智慧
1、操作活动:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
将一张纸对折,剪下两张叠放的三角形纸片。将它们相等的一组边重合,可以得到一个四边形。设计意图:学生在拼图活动中可以获得丰富的感知,经历和体验图形的'变化过程,引导学生感悟知识的生成、发展和变化.
2、观察、讨论:
(1)两张纸片拼成了怎样的图形?它是四边形吗?
(2)这个图形中有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的特征,并与同伴交流。
设计意图:通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性.
3、平行四边形的定义。
4、介绍平行四边形的书写方式及对角线、对边、对角、邻角的定义。
5、学生动手画一个平行四边形ABCD。
设计意图:通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为探究图形性质打下坚实基础。
(三)、知识源于悟:
1、做一做(让学生实际动手操作)(出示幻灯片)
先将复制后的四边形与原来的四边形重合,然后绕一个顶点旋转180°,再平移该四边形,它还能与原来的四边形ABCD重合吗?
(教师用展示整个旋转变化过程)
2、讨论:(小组交流)
(1)通过以上活动,你能得到哪些结论?
(2)平行四边形ABCD对边、对角分别有什么关系?能用数学知识验证你的结论吗?
3、结论:平行四边形的对边相等
平行四边形的对角相等
平行四边形的邻角互补
设计意图:以学生原有的知识为出发点,引导学生进行小组学习,通过一系列的动手、操作、观察、实践、思考、探索、交流来获取知识和学会学习,使他们更好体会合作交流、互相评价、互相尊重的学习方式。同时让学生经历数学知识的形成的过程,能很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。从而培养学生数学学习的探究能力、分组合作能力、逻辑思维能力和推理论证能力等。
4、填表:分边、角总结平行四边形的性质,并用几何语言叙述。
设计意图:规范学生的几何语言。同时也使学生清楚,平行四边形的定义既可以作为性质运用,也能作为证明一个四边形是平行四边形的方法,在此为平行四边形的判定做了一个铺垫。
(四)、随堂练习
1、在平行四边形ABCD中,已知∠A=50°,BC=3cm,则∠B=____,∠D=____,AD=______。
2、在□ABCD中∠ADC=125,∠CAD=21°,求∠ABC,∠CAB的度数.
3、平行四边形ABCD中,若在AD上取一点E,CB上取一点F,且AE=CF,试测量比较BE,DF的大小并说明理由。
设计意图:1主要是引导学生归纳小结帮助学生熟练掌握平行四边形的性质。
2、3是应用性质解题部分,2采用学生板演,教师巡回的辅导方式,让学生巩固所学知识,检验本节课对知识的掌握情况,并对书写格式,及时的订正和指导。3采取小组合作解答,互帮互助。让学生熟练性质定理,为以后的证明和计算打好基础。
(五)、新课小结:
通过本节课的学习,你有什么收获?(同桌互讲,小组交流,师生共同小结)
设计意图:引导学生归纳小结本节课的知识要点,使学生养成学习→总结→学习的良好习惯,发挥自我评价的作用,也培养学生的语言表达能力。
(六)、作业设计:
1、必做题:P99习题4.1第
1、3题。
2、选做题:利用平行四边形设计美丽的图案,表达你美好的愿望。
五、课后反思
1.注重学生对数学学习兴趣的培养
以实际生活中的图片引入,通过动手画图和实验探索来激发学生的好奇心和求知欲。2.注重对“基础知识”、“基本技能”的理解、掌握和创新能力的培养本节课通过变式、探究及其相关应用来体现这一基本思想。3.注重师生之间的互动和交流
学生是学习活动的主人,教师是学习活动的引导者、组织者和参与者,在此过程中,教师始终关注学生学习的情绪体验,注重对学习过程的评价。通过归纳整理,培养学生善于反思的良好学习习惯,为自身的发展打下坚实基础。
八年级数学说课稿 篇8
一、说教材
“数据的分段整理”是苏教版小学数学四年级上册第九单元《统计与可能性》中的内容。分段整理数据是基本的统计活动,在第一学段,学生已经能够按统计对象的某些属性,如品种、形状、颜色、用途……进行分类统计。本单元继续教学把一组数据按大小分成若干段进行统计,并把统计获得的数据填入相应的统计表里。本课时是初步教学分段统计数据,所以例题和习题都明确了数据以及各段的数值范围,不要求学生独立设计分段。 本课时内容主要是数据的分段整理。 教材通过创设学校准备为鼓号队员购买服装,想请全体学生出谋划策的教学情境,引出怎样购买鼓号服这一学习任务。 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据,完成统计表,分析整理后的数据,根据分析结果解决实际问题。
《数学课程标准》指出,教师不应只做教材忠实的实施者,而应该做教材的开发者和建设者,要学会创造性地使用教材。为了更加贴近每个学生生活经历,让学生有话可说,我对教材进行了重新开发,把购买鼓号队服改为购买校服。围绕购买校服而产生的一系列问题,引导学生经历“收集数据——分段整理——制作统计表—— 分析数据”的.全过程,而学习重点放在分段整理数据上,整理的方法采用 多种方法,在交流比较的过程中逐步优化,突出 画“正”字的方法 ,得到的数据仍然采用单式统计表描述。所以教学中应突出数据分段的必要性、分段方法以及如何分段整理,使学生在活动中掌握这部分知识,形成相关的统计技能。为今后更进一步学习统计图表、概率等知识打好基础。
二、说学情
四年级的学生由于在第一学段中对数据统计过程已有所体验,并学会了一些简单的收集,整理和描述数据的方法,能根据统计结果回答一些简单的问题。在此基础上,再次经历统计过程,让学生进一步体会收集和整理数据的必要性,感受统计是解决问题的方法之一。
根据小学儿童好动、注意力容易分散、求知欲强等心理特征,在教学中,我注重创设与学生生活的环境、知识背景密切相关的,又是学生感兴趣的学习情境。从学生熟悉的事物出发,有效地组织、引导学生进行观察、交流、反思等活动,并使全体学生参与到实践活动之中。
三、说教法与学法
《数学课程标准》指出,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。传统的严格意义上的教师教和学生学,应该不断让位于师生互教互学,彼此形成一个“学习共同体”。
根据教材内容的特点,结合学生实际,在教学中我灵活采用谈话法、观察法、讨论法、练习法等多种教学方法。引导学生通过搜集全班同学的身高数据、根据服装型号分段、用画“正“字等方法整理、绘制统计表、利用统计数据到服装厂定做校服等。用统计方法解决问题。学生在迫切完成任务和强烈的探究兴趣驱动下, 对本来枯燥的统计知识产生一种新鲜感和真实感,每个学生都能自觉地参与到学习中。学生能自然而然地根据已有的生活经验,通过调查访问、探究尝试、合作商讨、交流反思等多种学习方法,真实经历用统计解决问题的全过程 ,特别是学会了分段整理的方法,从而获得了成功的愉悦体验。
A、重视激活学生的生活经验
本课的导入,给学生做校服的情境, 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据。学生经历了统计的全过程,感受到统计表与身边的人和事是息息相关的。最后,布置学生写一份建议书,也是深有教育价值的。
B、重视引导学生进行分析
数据统计的全过程有数据收集,数据整理,统计制表,分析数据,得出结论五个环节,其中分析数据是重要的环节,也是课程标准中强调的内容。在“女生1分钟跳绳检测”一题中,我引导学生尝试分析“你 看了这张统计表,你知道了什么?”在“空气质量”一题中,我让学生说“ 看了这些数据,你觉得常州市的空气质量情况如何?为什么?作为一个常州的小市民,你觉得能为改善常州的环境做些什么?”学生的分析是推己及人,丰富多彩的,是符合孩子心理实际的。设计这样的分析,我认为是统计中必不可少的环节,也是对学生进行行为习惯教育的良好载体。
八年级数学说课稿 篇9
尊敬的各位评委,各位老师:
大家好,今天我说课的内容是人教版八年级下册第十九章《四边形》的第三节《梯形》.
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:两课时。本节课是第一课时,第二课时是梯形的判定及应用
(三)教学目标1. 知识与技能目标:掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2.过程与方法目标:⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略.
3.情感、态度与价值观目标:让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四) 教学重点、难点:本节课的教学重点分成三个层次1、掌握梯形的定义,认识梯形的其他相关概念;2、熟练应用等腰梯形的性质;3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法.正如波利亚所说的:“学习任何知识的最佳途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括(
六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生独立完成, 用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程.并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:最好的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题.顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:1、平行四边形和梯形的区别和联系;2、我看等腰梯形的特殊性;3、解决梯形的常用方法。以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的.是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:(1)等腰梯形(2)直角梯形.(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔.
六、四点说明 :
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。2、时间的大体安排 :情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。谢谢!
八年级数学说课稿 篇10
一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.
2.会进行简单的二次根式的乘法运算.
3.使学生能联系几何课中学习的勾股定理解决实际问题.
二、教学重点和难点
1.重点:会利用积的算术平方根的性质化简二次根式.
2.难点:二次根式的乘法与积的算术平方根的关系及应用.
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的`算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.
本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.
1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要
的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b) 也成立
(二)新课
积的算术平方根.
由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):
1、 2、 3、
说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题
八年级数学说课稿 篇11
一、说教材(教材分析)
《正方形》这节课是九年义务教育人教版数学教材初二年级下册第十九章章第二节的内容.纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线,三角形,平行四边形,矩形,菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察,操作等活动经验的基础上出现的.目的在于让学生通过探索正方形的性质,进一步学习,掌握说理和进行简单推理的数学方法.这一节课既是前面所学知识的延续,又是对平行四边形,菱形,矩形进行综合的不可缺少的重要环节.
教材从学生年龄特征,文化知识实际水平出发,先让学生动手做,动脑思考,然后与同伴交流,探索,总结归纳,升华得出正方形的概念,再由概念去探索正方形的性质.这样的安排使学生在整个学习过程中真正享受到探索的乐趣.
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形,矩形,菱形之间的内在联系.根据大纲要求及本班学生的实际情况,本节课制定了知识,能力,情感三方面的目标.
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算,推理,论证;
(二)能力目标:
1、通过本节课培养学生观察,动手,探究,分析,归纳,总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学,严谨,理论联系实际的良好学风;
2、培养学生互相帮助,团结协作,相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性.
二、说学生:(学生分析)
这节几何课是在初二年级三班上的一节课.该班学生基础一般,但上课很积极,有很强的表现欲,通过前一学期的培养,具有一定的独立思考和探究的能力.但该班学生的口头语言表达能力方面稍有欠缺,所以在本节课的教学过程中,设计了让学生自己组织语言培养说理能力,让学生们能逐步提高.
三、说教法(教法分析)
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法.
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念.通过观察,讨论,归纳,总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义,性质理解,巩固加以升华.
整个教学过程中教师通过提问,观察,思考,讨论,充分调动学生非智力因素,让学生在老师的引导下自始至终处于一种积极思维,主动学习的学习状态.而教师在其中当好课堂教学的组织者.
四、说学法:(学法分析)
本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手,观察,思考,分析,总结得出结论.在小组讨论中通过互相学习,让学生体验合作学习的乐趣.
五、说教学程序:
(一)(第一环节)相关知识回顾
以提问的形式联系平行四边形,矩形,菱形的定义及性质之后,引导学生发现矩形,菱形的实质是由平行四边形角度,边长的变化得到的.(由课件演示以上两种变化)并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形让学生们通过手上的学具演示以上两种变化,从而得出结论.
(二)(第二环节)新课讲解
通过学生们的发现引出课题"正方形"
1、(第一个知识点)正方形的定义
引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边,角的变化演变出正方形的过程.请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形.(投影仪显示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另一个定义:一个角是直角的菱形是正方形.或者把一个角是直角与平行四边形组合成矩形,再加上一组邻边相等这个条件,可得正方形的第三个定义:一组邻边相等的矩形是正方形;此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质.
{2、正方形的性质(由课件演示)
定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直,平分,每条对
角线平分一组对角.}(不念)以上是对正方形定义和性质的学习,之后进行例题讲解.
{ 3、例题讲解(由课件显示)
求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.}(不念)此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知,求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写.从而培养他们语言表达能力,让学生的个性得到充分的展示
4、课堂练习(然后我又设计了两种不同类型的练习题
第一部分设计了三道有关正方形的周长,面积,对角线,边长计算的填空,目的是对正方形性质的`进一步理解,并考察学生掌握的情况.
第二部分是选优题,通过这道生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活.
5课堂小结(由课件演示)
此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美.
6、欣赏实际生活中正方形的应用(课件显示)
第6个环节是我设计了一些正方形在实际生活中应用的图片,在优美的音乐中欣赏实际生活中正方形的应用,再一次让学生们感受正方形的美.
7、作业设计(我设计的是教材159页,第12,14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识.
六、说教学评价:
本课的教学注意挖掘教材中培养创新意识的素材,利用计算机辅助教学,为学生营造一种创新的学习氛围.把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性,积极性,体现学生的主体地位.同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神.
七、教学反思
一、本节课通过课件播放平行四边形一个角的变化和一组对边的变化得到正方形,成功的达到了学生对正方形直观认识,并轻松地总结出正方形的性质.
二、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言.
三、通过一道拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作,合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验.
八年级数学说课稿 篇12
一、说教材
本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。
二、说教学目标
知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。
三、教学重点与难点
重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:
一、回顾与思考电脑展示人字型屋顶的图像,提问:
1、屋顶设计成了何种几何图形?
2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)
3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。
二、观察与表达
1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。
2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:
定理1:等腰三角形两底角相等。
定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。
通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。
学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。
三、了解与探究
3、探索定理
一、(A组口答,B组独立解答)
A组:
1、等腰直角三角形的两个锐角各等于几度?
2、若等腰三角形顶角为40度,则它的顶角为几度?
3、若等腰三角形底角为40度,则它的底角为几度?
B组:
1、若等腰三角形一个内角为40度,则它的其余各角为几度?
2、若等腰三角形一个内角为120度,则它的.其余各角为几度?
3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。
二、根据性质2填空:
(1)∵AB=AC,AD⊥BC,
∴
(2)∵AB=AC,BD=CD,
∴
(3)∵AB=AC,∠1=∠2,
∴
为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。
四、应用与提高应用举例:
如图,某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B,∠C,∠CAD的度数。
例1:求证等腰三角形两底角平分线相等AEDBC由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:
①根据命题画出相应的图形,并标出字母
②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。
③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。
从已知出发:
a:由AB=AC联想到什么
b:BD、CE是△ABC的角平分线联想到什么
c:由a、b联想到什么
d:由a、b、c联想到什么
e:由d联想到什么
从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。
“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。
分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。
本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△AOBDCO’ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.
求证:BD=CD,AD⊥BC
思考:(1)本题的结论有何特
殊之处?——证明两个结论
(2)你准备如何得出这两个结论?——分别认证或同时证明
(3)哪一种简捷?利用什么性质?
在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。
变式拓展:
(1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?
(2)若点O在BC上呢?
经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。
在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会
通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价
八年级数学说课稿 篇13
一、教材分析
说课内容:
《整式的乘除与因式分解》的《完全平方公式》。
教材的地位和作用:
完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。
本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。
教学目标和要求:
由课标要求以及学生的情况我将三维目标定义为以下三点:
知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。
过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。
情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。
教学的重点与难点:
根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。
二、教法与学法
(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。
(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。
(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。
三、教学过程
教师活动学生活动设计意图
一、创设情景,推导公式
计算
1、想一想(电脑演示)
一块边长为a米的'正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)
⑴、分别写出每块实验田的面积;
⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?
2、算一算
①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)
3、做一做
你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?
二、自主探究,合作交流
板书公式:
①②1、问题:
①这两个公式有何相同点与不同点?
②你能用自己的语言叙述这两个公式吗
【八年级数学说课稿】相关文章:
八年级数学说课稿11-14
八年级上册数学说课稿11-25
小学数学说课稿 小学数学优质说课稿06-25
八年级数学说课稿15篇01-13
关于八年级数学说课稿10-02
勾股定理八年级数学说课稿04-18
小学数学的说课稿01-09
初中数学的说课稿02-16
数学说课稿01-19