- 相关推荐
数学考试常见错误汇总及解析
考试是一种严格的知识水平鉴定方法。通过考试可以检查学生的学习能力和其知识储备。以下是小编整理的数学考试常见错误汇总及解析,仅供参考,欢迎大家阅读。
一、概念不清
例1:多项式3a-2b的每一项是( )。
正确答案:3a、-2b
典型错误:3a、2b
错误原因:概念不清。多项式是多个单项式的和,而很多学生理解为了多项式是多个单项式通过加减运算连接起来的式子,所以特别容易在符号上犯错。
例2:(a+b)算作a+b,漏掉了中间的二倍首尾。
原因:①公式记忆不清;
②没有理解公式的来源,完全平方公式是根据整式乘法得到的:
(a+b)=(a+b)(a+b)=a(a+b)+b(a+b)=a+ab+ab+b=a+2ab+b.
例3:判断一元一次方程
典型错误:将1/x+2x=1/x+3判断为一元一次方程,将y(y+1)=y+2判断为一元二次方程。
错误原因:概念理解不透彻。一个方程要是一元一次方程要满足以下条件,第一,首先必须是整式方程,而整式方程是形式定义,所以1/x+2x=1/x+3是分式方程;第二,一元一次方程是一个内涵定义,在满足整式方程的前提下,要进行化简,合并同类项以后再判断,所以y(y+1)=y+2是一个一元一次方程。
例4:(a-1)x|a|=5是一个一元一次方程,求a的值。
典型错误:a=±1。
错误原因:对一元一次方程的形式理解不透彻。axk+b=0是一个一元一次方程,要满足两个条件:①a≠0,②k=1。很多学生容易漏掉第一个条件。所以例4中的a要满足两个条件:a-1≠0,且|a|=1,所以解得a=-1。
二、粗心
典型错误有:
①上面是x+1,下一步就变成了x-1;
②去括号的符号变化,如-(x+1)做出来是-x+1;
③题目条件中给的是x-1/x=3,做题时就变成了x+1/x=3,从刚开始就错了,后面就更不可能对了;
④移项时的符号问题,如-3x移到等号另一边后没有变号;
⑤常数项漏乘等。
错误原因:
①心态问题:很多学员看到简单的题,就有点飘了,想着赶快做完去做后面的难题,结果欲速则不达,不该错的错了很多。一定要谨记:“我易人易,我不大意。”
②做题习惯1:很多学生喜欢做题中跳步做,比如说解一元一次方程一般是按照去分母、去括号、移项、合并同类项、系数化1这样的步骤来做。有些学生喜欢去分母和去括号在一步内完成,经常会造成符号错误。
③做题习惯2:解完方程以后没有代入验证的习惯。
三、分类讨论不全面
1.这种错误最常见于复杂绝对值化简的题型中,这种题型最常用的方法是零点分段法。零点分段法是相对比较固定的:①找零点,②利用数轴进行分段,③分类讨论。
很多同学在做题时直接跳过第一步和第二部,根据自己的感觉直接进行第三步的分类讨论,结果造成分类讨论时的不全面或者重复讨论。
如果认真完成第一步的找零点,找到所有的零点,然后通过第二部利用数轴进行分段,这样所有的讨论区间就非常清晰了,然后从左到右分别讨论数轴上所有的区间,这样出错的概率就很小了。
2.除了复杂绝对值化简的题目,其他的分类讨论题型中非常容易漏掉0这个特殊值。
如:解ax<b。
很多学生会解出来a>0时,x>b/a,a<0时,x<b/a。漏掉了a=0的情况。当a=0时,当b>0时,x可以取任意值,当b≤0时,x无解。
四、常考易错题型,例题解析
1、和差问题
已知两数的和与差,求这两个数。
例:已知两数和是10,差是2,求这两个数。
【口诀】
和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4
2、差比问题
例:甲数比乙数大12且甲:乙=7:4,求两数。
【口诀】
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
3、年龄问题
例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?
【口诀】
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4、和比问题已知整体,求部分。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
【口诀】
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12
5、鸡兔同笼问题
例:鸡免同笼,有头36,有脚120,求鸡兔数。
【口诀】
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12
6、路程问题
【口诀】
相遇那一刻,路程全走过。
除以速度和,就把时间得。
(1)相遇问题
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得,即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
【口诀】
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
先走的路程:3X2=6(千米)
速度的差:6-3=3(千米/小时)
追上的时间:6/3=2(小时)
7、浓度问题
(1)加水稀释
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
【口诀】
加水先求糖,糖完求糖水。
糖水减糖水,便是加水量。
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
【口诀】
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量再减去原来的糖水量,21.25-20=1.25(千克)
8、工程问题
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
【口诀】
工程总量设为1,1除以时间就是工作效率。
单独做时工作效率是自己的,一起做时工作效率是众人的效率和。
1减去已经做的便是没有做的,没有做的除以工作效率就是结果。
[1-(1/6+1/4)X2]/(1/6)=1(天)
9、植树问题
【口诀】
植树多少棵,要问路如何?
直的减去1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?
路是直的,则植树为120/4-1=29(棵)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?
路是圆的,则植树为120/4=30(棵)
10、盈亏问题
【口诀】
全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。
除以分配的差,结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题,则大的减去小的,即公式为:(680-200)/(50-45)=96(人),相应的子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?
全亏问题,则大的减去小,即公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
11.余数问题
例:时钟现在表示的时间是18点整,分针旋转1990圈后是几点钟?
【口诀】
余数有(N-1)个,最小的是1,最大的是(N-1)。
周期性变化时,不要看商,只要看余。
分析:分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)
12.牛吃草问题
【口诀】
每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。原有的草量依此反推。
公式:A头B天的吃草量减去B天乘以草的生长速率。未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天),则草的生长速率是45/3=15(牛/天);
原有的草量依此反推:
公式:A头B天的吃草量减去B天乘以草的生长速率。
原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率,这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所求的天数为:
原有的草量/分配剩下的牛=72/6=12(天)
【数学考试常见错误及解析】相关文章:
数学考试初中作文02-07
小升初数学考试技巧05-23
《错误》说课稿07-06
中考数学考试的解题方法09-27
《常见的量》教案03-09
教案常见的碱03-12
错误话题作文01-13
错误小学作文01-16
《我们的错误》教案09-11
错误小学作文09-12